Power Generation Technology ›› 2024, Vol. 45 ›› Issue (2): 240-249.DOI: 10.12096/j.2096-4528.pgt.23134
• Flexible Power Generation Technology Under Dual-Carbon Background • Previous Articles Next Articles
Qigang DENG1,2, Zhuo LÜ1,2, You SHI1,2, Jiayi LU1,2, Xu ZHOU1,2, Aoyu WANG3, Dong YANG3
Received:
2023-10-27
Published:
2024-04-30
Online:
2024-04-29
Contact:
You SHI
Supported by:
CLC Number:
Qigang DENG, Zhuo LÜ, You SHI, Jiayi LU, Xu ZHOU, Aoyu WANG, Dong YANG. Safety Calculation and Analysis of Water Wall for a 700 MW Ultra-Supercritical Circulating Fluidized Bed Boiler Without External Bed After Power Failure[J]. Power Generation Technology, 2024, 45(2): 240-249.
参数 | 数值(100% BMCR负荷下) |
---|---|
水冷壁入口流量/(t∙h-1) | 1 832.64 |
水冷壁出口压力/MPa | 31.756 |
水冷壁出口温度/℃ | 430 |
省煤器入口流量/(t∙h-1) | 1 925 |
给水压力/MPa | 32.25 |
给水温度/℃ | 309.8 |
Tab. 1 Main design parameters of boiler
参数 | 数值(100% BMCR负荷下) |
---|---|
水冷壁入口流量/(t∙h-1) | 1 832.64 |
水冷壁出口压力/MPa | 31.756 |
水冷壁出口温度/℃ | 430 |
省煤器入口流量/(t∙h-1) | 1 925 |
给水压力/MPa | 32.25 |
给水温度/℃ | 309.8 |
参数 | 数值 |
---|---|
下炉膛水冷壁厚度/mm | 31.8 |
下炉膛水冷壁外径/mm | 6.5 |
上炉膛水冷壁厚度/mm | 33.4 |
上炉膛水冷壁外径/mm | 7 |
下炉膛耐磨材料厚度/mm | 47.5 |
下炉膛耐磨材料导热系数/[W/(m⋅K)] | 3 |
水冷壁导热系数/[W/(m⋅K)] | 22.6 |
浇注料区高度/m | 11.5 |
Tab. 2 Structural parameters of water wall tube
参数 | 数值 |
---|---|
下炉膛水冷壁厚度/mm | 31.8 |
下炉膛水冷壁外径/mm | 6.5 |
上炉膛水冷壁厚度/mm | 33.4 |
上炉膛水冷壁外径/mm | 7 |
下炉膛耐磨材料厚度/mm | 47.5 |
下炉膛耐磨材料导热系数/[W/(m⋅K)] | 3 |
水冷壁导热系数/[W/(m⋅K)] | 22.6 |
浇注料区高度/m | 11.5 |
时间/s | 省煤器进口工质流量/(t⋅h-1) | 省煤器进口焓值/(kJ⋅kg-1) |
---|---|---|
0 | 1 925.00 | 1 377.82 |
30 | 1 925.00 | 1 377.82 |
40 | 1 478.57 | 1 377.82 |
50 | 973.50 | 1 377.82 |
60 | 448.45 | 1 377.82 |
70 | 0 | 0 |
3 000 | 0 | 0 |
Tab. 3 Inlet parameter variation of working fluid for economizer after power failure
时间/s | 省煤器进口工质流量/(t⋅h-1) | 省煤器进口焓值/(kJ⋅kg-1) |
---|---|---|
0 | 1 925.00 | 1 377.82 |
30 | 1 925.00 | 1 377.82 |
40 | 1 478.57 | 1 377.82 |
50 | 973.50 | 1 377.82 |
60 | 448.45 | 1 377.82 |
70 | 0 | 0 |
3 000 | 0 | 0 |
1 | 董洁,乔建强 .“双碳”目标下先进煤炭清洁利用发电技术研究综述[J].中国电力,2022,55(8):202-212. |
DONG J, QIAO J Q .A review on advanced clean coal power generation technology under “carbon peaking and carbon neutrality” goal[J].Electric Power,2022,55(8):202-212. | |
2 | 王洪健,王海洋,孔皓,等 .135 MW循环流化床锅炉纯燃准东煤改造策略与运行技术研究[J].发电技术,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 |
WANG H J, WANG H Y, KONG H,et al .Retrofitting strategy and operating technology of pure burning Zhundong coal in a 135 MW circulating fluidized bed boiler[J].Power Generation Technology,2022,43(6):918-926. doi:10.12096/j.2096-4528.pgt.21107 | |
3 | 吕俊复,周托,张扬,等 .碳中和目标下循环流化床锅炉技术的展望[J].动力工程学报,2022,42(11):1005-1012. doi:10.19805/j.cnki.jcspe.2022.11.002 |
LV J F, ZHOU T, ZHANG Y,et al .Prospect of the circulating fluidized bed boiler technology for the goal of carbon neutralization[J].Journal of Chinese Society of Power Engineering,2022,42(11):1005-1012. doi:10.19805/j.cnki.jcspe.2022.11.002 | |
4 | LI D, KE X, ZHANG M,et al .A comprehensive mass balance model of a 550 MWe ultra-supercritical CFB boiler with internal circulation[J].Energy,2020,206:117941. doi:10.1016/j.energy.2020.117941 |
5 | 胡仙楠,邓博宇,刘欢鹏,等 .循环流化床锅炉负荷快速调节技术现状及发展趋势[J].洁净煤技术,2023,29(6):11-23. |
HU X N, DENG B Y, LIU H P,et al .Status and development trend of rapid load regulation technology for circulating fluidized bed boiler[J].Clean Coal Technology,2023,29(6):11-23. | |
6 | 张少强,陈露,刘子易,等 .大型燃煤锅炉深度调峰关键问题探讨[J].南方能源建设,2022,9(3):16-28. doi:10.16516/j.gedi.issn2095-8676.2022.03.003 |
ZHANG S Q, CHEN L, LIU Z Y,et al .Discussion on key problems of depth peak adjustment for large coal-fired boilers[J].Southern Energy Construction,2022,9(3):16-28. doi:10.16516/j.gedi.issn2095-8676.2022.03.003 | |
7 | 宋畅,吕俊复,杨海瑞,等 .超临界及超超临界循环流化床锅炉技术研究与应用[J].中国电机工程学报,2018,38(2):338-347. |
SONG C, LV J F, YANG H R,et al .Research and application of supercritical and ultra-supercritiacl circulating fluidized bed boiler technology[J].Proceesings of the CSEE,2018,38(2):338-347. | |
8 | 王思洋,王文毓,沈植,等 .高效宽负荷率超超临界锅炉垂直管圈水冷壁在低质量流速下的传热特性[J].动力工程学报,2017,37(2):85-90. doi:10.3969/j.issn.1674-7607.2017.02.001 |
WANG S Y, WANG W Y, SHEN Z,et al .Heat-transfer performance of vertical water wall in an ultra-supercritical pressure boiler with high efficiency and wide regulation load at low mass flux[J].Journal of Chinese Society of Power Engineering,2017,37(2):85-90. doi:10.3969/j.issn.1674-7607.2017.02.001 | |
9 | 许霖杰,程乐鸣,季杰强,等 .超/超临界循环流化床锅炉整体数值模型[J].中国电机工程学报,2018,38(2):348-355. |
XU L J, CHENG L M, JI J Q,et al .Integrated numerical model for ultra/supercritical CFB boilers[J].Proceesings of the CSEE,2018,38(2):348-355. | |
10 | ZHANG Z, ZHAO C R, YANG X T,et al .Influences of tube wall on the heat transfer and flow instability of various supercritical pressure fluids in a vertical tube[J].Applied Thermal Engineering,2019,147:242-250. doi:10.1016/j.applthermaleng.2018.10.024 |
11 | DENG B Y, ZHOU T, ZHANG S M,et al .Safety analysis on the heating surfaces in the 660 MW ultra-supercritical CFB boiler under sudden electricity failure[J].Energies,2022,15(21):7982. doi:10.3390/en15217982 |
12 | 李耀德,董乐,李娟,等 .600 MW超超临界循环流化床锅炉水冷壁传热特性研究[J].热能动力工程,2021,36(6):86-93. |
LI Y D, DONG L, LI J,et al .Study on water wall heat transfer characteristics of 600 MW ultra-supercritical circulating fluidized bed boiler[J].Journal of Engineering for Thermal Energy and Power,2021,36(6):86-93. | |
13 | 王文毓,李耀德,赵云杰,等 .超超临界循环流化床锅炉内螺纹管水冷壁流动传热特性试验研究[J].中国电机工程学报,2018,38(2):373-382. |
WANG W Y, LI Y D, ZHAO Y J,et al .The experimental investigation on flow and heat transfer characteristics of the rifles water wall tube of an ultra-supercritical CFB boiler[J].Proceesings of the CSEE,2018,38(2):373-382. | |
14 | SHEN Z, YANG D, XIE H Y,et al .Flow and heat transfer characteristics of high-pressure water flowing in a vertical upward smooth tube at low mass flux conditions[J].Applied Thermal Engineering,2016,102:391-401. doi:10.1016/j.applthermaleng.2016.03.150 |
15 | SHEN Z, YANG D, MAO K Y,et al .Heat transfer characteristics of water flowing in a vertical upward rifled tube with low mass flux[J].Experimental Thermal and Fluid Science,2016,70:341-353. doi:10.1016/j.expthermflusci.2015.09.021 |
16 | 李舟航,张大龙,吴玉新,等 .垂直上升光管内超临界水的传热恶化分析和判据[J].中国电机工程学报,2014,34(35):6304-6310. |
LI Z H, ZHANG D L, WU Y X,et al .A new criterion for predicting deterioration of heat transfer to supercritical water in smooth tubes[J].Proceesings of the CSEE,2014,34(35):6304-6310. | |
17 | 樊旭 .基于能量平衡和灰平衡的CFB锅炉静态模型研究[D].保定:华北电力大学,2005. |
FAN X .Research of CFB boiler’s static model based on the energy balance and ash balance[D].Baoding:North China Electric Power University,2005. | |
18 | 黄永志 .循环流化床锅炉水动力特性研究[D].上海:上海交通大学,2016. |
HUANG Y Z .Research on water circulation characteristics of evaporating system in CFB boiler[D].Shanghai:Shanghai Jiaotong University,2016. | |
19 | 李银龙,董乐,牛田田,等 .660 MW超临界CFB锅炉机组跳闸后受热面安全性计算分析[J].中国电机工程学报,2021,41(17):5957-5966. doi:10.13334/j.0258-8013.pcsee.201970 |
LI Y L, DONG L, NIU T T,et al .Calculation and analysis on the safety of heating surfaces for a 660 MW supercritical CFB boiler under boiler trip[J].Proceesings of the CSEE,2021,41(17):5957-5966. doi:10.13334/j.0258-8013.pcsee.201970 | |
20 | 邓博宇,张缦,李少华,等 .失电事故下350 MW超临界CFB锅炉水冷壁安全性分析[J].中国电机工程学报,2019,39(16):4799-4807. |
DENG B Y, ZHANG M, LI S H,et al .Analysis on the safety of the water wall in a 350 MW supercritical CFB boiler under electricity failure condition[J].Proceesings of the CSEE,2019,39(16):4799-4807. | |
21 | 李果,周旭,周棋,等 .超临界CFB锅炉给水中断BT后水冷壁安全性分析[J].东方电气评论,2016,30(4):43-46. doi:10.3969/j.issn.1001-9006.2016.04.010 |
LI G, ZHOU X, ZHOU Q,et al .Study of the safety of water-wall after the BT of water supply interruption of supercritical CFB boiler[J].Dongfang Electric Review,2016,30(4):43-46. doi:10.3969/j.issn.1001-9006.2016.04.010 | |
22 | 李银龙,杨冬,李维成,等 .660 MW超超临界CFB锅炉失电事故下受热面安全性分析及紧急补水泵选型[J].动力工程学报,2022,42(5):393-401. |
LI Y L, YANG D, LI W C,et al .Safety analysis of heating surfaces and selection of emergency water supply pump for a 660 MW ultra-supercritical CFB boiler under power failure condition[J].Journal of Chinese Society of Power Engineering,2022,42(5):393-401. | |
23 | 包浩然 .循环流化床生物质气化炉内气固流动与气化特性CPFD数值模拟研究[D].包头:内蒙古科技大学,2022. |
BAO H R .Numerical simulation of gas-solid flow and gasification characteristics in a circulating fluidized bed biomass gasifier by CPFD[D].Baotou:Inner Mongolia University of Science & Technology,2022. | |
24 | 董中豪,卢啸风,史丽超,等 .炉膛耐火材料热惯性对循环流化床锅炉调峰速率的影响[J].发电技术,2023,44(4):514-524. doi:10.12096/j.2096-4528.pgt.22175 |
DONG Z H, LU X F, SHI L C,et al .Influence of thermal inertia of refractory material in furnace on the peak regulating rate of circulating fluidized bed boiler[J].Power Generation Technology,2023,44(4):514-524. doi:10.12096/j.2096-4528.pgt.22175 | |
25 | 张宏涛,徐冰,白玉星,等 .钢混凝土界面接触热阻试验研究[J].土木建筑与环境工程,2015,37(2):34-38. doi:10.11835/j.issn.1674-4764.2015.02.006 |
ZHANG H T, XU B, BAI Y X,et al .Experimental analysis of the interface thermal contact resistance between steel and concrete[J].Journal of Civil and Environmental Engineering,2015,37(2):34-38. doi:10.11835/j.issn.1674-4764.2015.02.006 | |
26 | 牛田田,张伟强,辛胜伟,等 .超临界循环流化床锅炉屏式过热器吸热量偏差特性研究[J].中国电机工程学报,2022,42(6):2227-2238. |
NIU T T, ZHANG W Q, XIN S W,et al .Study on the heat absorption deviation characteristics of the platen superheaters in the supercritical circulating fluidized bed boiler[J].Proceedings of the CSEE,2022,42(6):2227-2238. |
[1] | Yong DING. Research on Deep Peak Shaving Performance of 1 000 MW Ultra-Supercritical Coal-Fired Boiler [J]. Power Generation Technology, 2024, 45(3): 382-391. |
[2] | Yanbing LI, Shuwang JIA, Junliang ZHANG, Yue FU, Ming LIU, Junjie YAN. Exergy Economic Analysis of Ultra-Supercritical Coal-Fired Power Plants With High-Level Layout of Turbine Under Load-Cycling Conditions [J]. Power Generation Technology, 2024, 45(1): 69-78. |
[3] | Xiaohe XIONG, Falin CHEN, Renhui RUAN, Houzhang TAN, Yansen LI. Experiment on Multi-Component Synchronous Test of Reducing Atmosphere Adjacent to Water Wall of High Temperature Corrosion Boiler [J]. Power Generation Technology, 2023, 44(6): 800-808. |
[4] | Quanbin ZHANG, Qiongfang ZHOU. Research on the Development Path of China’s Thermal Power Generation Technology Based on the Goal of “Carbon Peak and Carbon Neutralization” [J]. Power Generation Technology, 2023, 44(2): 143-154. |
[5] | Hongjian WANG, Haiyang WANG, Hao KONG, Tuo ZHOU, Man ZHANG, Hairui YANG. Retrofitting Strategy and Operating Technology of Pure Burning Zhundong Coal in a 135 MW Circulating Fluidized Bed Boiler [J]. Power Generation Technology, 2022, 43(6): 918-926. |
[6] | Xiufeng YAN, Ke ZONG, Xiunian HE, Lin GAO, Bin QIN, Mingkun WANG, Wentao HUI. Research on Steam Temperature Control Strategy in Peak Regulation of 1 000 MW Coal Power Unit [J]. Power Generation Technology, 2022, 43(3): 518-522. |
[7] | Mei YANG, Yunlong ZHOU, Jinfu YANG, Di WANG, Dongjiang HAN, Jiaxin BAO. Optimization of 700℃ Ultra-supercritical Single Reheat Power Generation System [J]. Power Generation Technology, 2021, 42(4): 509-516. |
[8] | Jing WANG, Jinfu YANG, Liqiang DUAN, Liguo TIAN, Yutian JING, Ming YANG. Optimal Design of Steam Turbine System for Advanced Ultra-supercritical Double Reheat Coal-fired Units [J]. Power Generation Technology, 2021, 42(4): 480-488. |
[9] | Xiaohui SONG, Heng LIANG, Xinming CHEN, Jianguo PU, Junlin LIAO, Gang WU, Jinliang YIN. Analysis and Application of Fast Closing Boundary Conditions for Governing Valves of 1 000 MW Ultra-supercritical Unit [J]. Power Generation Technology, 2020, 41(6): 689-696. |
[10] | Jinfu YANG,Zhongxiao ZHANG,Dongjiang HAN,Mei YANG,Yunlong ZHOU. New Supercritical Parameter Coal-Fired Power Generation System Structure Design Technology [J]. Power Generation Technology, 2019, 40(6): 555-563. |
[11] | Yizhan CHAI,Zhen YANG,Yuanyuan DUAN. Coal Ash Deposit Normal Spectral Emissivity Measurement [J]. Power Generation Technology, 2019, 40(4): 323-328. |
[12] | Yongping YANG. Review of Basic Research on Energy Clean and Efficient Utilization in Coal-fired Power Systems [J]. Power Generation Technology, 2019, 40(4): 308-315. |
[13] | Zhongqiu LIU,Guozhu ZHANG,Yinchen QIU,Juntai ZHANG,Shan WANG,Ming LIU. Analyses on Heat-Power Decoupling Potential and Energy Consumption Characteristics for CHP Plant Integrated With Heat Pump [J]. Power Generation Technology, 2019, 40(3): 253-257. |
[14] | Chu SHI,Ran LI,Zhen YANG,Yuanyuan DUAN. Heat Transfer in Furnace of 1 000 MW Coal-fired Unit Under Different Load Conditions [J]. Power Generation Technology, 2019, 40(3): 213-219. |
[15] | Liangyu MA,Qianqian LI,Fan LI. Coordinated System Intelligent Optimization for an Ultra-Supercritical Power Unit Based on Improved Simplex Method and Condensate Throttling [J]. Power Generation Technology, 2018, 39(6): 512-519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||