Power Generation Technology ›› 2023, Vol. 44 ›› Issue (6): 809-816.DOI: 10.12096/j.2096-4528.pgt.22108
• Power Generation and Environmental Protection • Previous Articles Next Articles
Zhongrong LIANG1, Maowei LAN2,3, Guo ZHENG1, Rongqiang HE1, Keyang QU3, Yunhua GAN3
Received:
2023-02-23
Published:
2023-12-31
Online:
2023-12-28
Contact:
Yunhua GAN
Supported by:
CLC Number:
Zhongrong LIANG, Maowei LAN, Guo ZHENG, Rongqiang HE, Keyang QU, Yunhua GAN. Study on Multi-Objective Optimization of High-Efficiency and Low-NO x Emissions of Power Station Boilers Based on Least Squares Support Vector Machines[J]. Power Generation Technology, 2023, 44(6): 809-816.
Car/% | Har/% | Oar/% | Nar/% | Sar/% | Mt/% | Aar/% | Qnet,ar/(kJ/kg) |
---|---|---|---|---|---|---|---|
55.412 | 3.408 | 9.393 | 0.831 | 0.630 | 13.500 | 16.826 | 20 740 |
Tab. 1 Sample coal quality parameters
Car/% | Har/% | Oar/% | Nar/% | Sar/% | Mt/% | Aar/% | Qnet,ar/(kJ/kg) |
---|---|---|---|---|---|---|---|
55.412 | 3.408 | 9.393 | 0.831 | 0.630 | 13.500 | 16.826 | 20 740 |
变量 | 氧量/% | 燃尽风风门开度前墙A、B侧/% | 燃尽风风门开度后墙A、B侧/% | 外二次风风门(1—8)开度/% |
---|---|---|---|---|
下限 | 2 | 10 | 10 | 10 |
上限 | 7 | 100 | 100 | 100 |
Tab. 2 Variation range of operation volume
变量 | 氧量/% | 燃尽风风门开度前墙A、B侧/% | 燃尽风风门开度后墙A、B侧/% | 外二次风风门(1—8)开度/% |
---|---|---|---|---|
下限 | 2 | 10 | 10 | 10 |
上限 | 7 | 100 | 100 | 100 |
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 345.62 |
MOPSO | 37 | 58.99 |
Tab. 3 Comparison of optimization performance of two algorithms under high load conditions
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 345.62 |
MOPSO | 37 | 58.99 |
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 260.19 |
MOPSO | 30 | 72.16 |
Tab. 4 Comparison of optimization performance of two algorithms under medium load conditions
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 260.19 |
MOPSO | 30 | 72.16 |
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 210.48 |
MOPSO | 68 | 59.26 |
Tab. 5 Comparison of optimization performance of two algorithms under low load conditions
优化算法 | 优化结果数量 | 优化用时/s |
---|---|---|
加权-粒子群 | 9 | 210.48 |
MOPSO | 68 | 59.26 |
工况 | 锅炉负荷/MW | 运行氧质量分数/% | 燃尽风风门开度前、后墙A/B侧/% | 外二次风风门(1—8)开度/% | η/% | ρ(NO x )/ (mg⋅m-3) |
---|---|---|---|---|---|---|
原始工况 | 724.958 | 4.106 | 100.000/32.899/ 100.000/32.298 | 20.388/50.048/ 99.687/99.880/ 99.580/95.478/ 49.943/20.462 | 92.580 | 344.440 |
加权-粒子群算法 a=0.5,b=0.5 | 724.958 | 3.839 | 100.000/97.965/ 100.000/85.562 | 20.415/50.045/ 99.669/99.763/ 99.434/95.463/ 49.933/20.458 | 92.572 | 276.563 |
MOPSO算法 | 724.958 | 3.862 | 95.934/76.255/ 98.967/97.221 | 20.462/50.048/ 99.674/99.717/ 99.593/95.454/ 49.933/20.456 | 92.626 | 291.955 |
Tab. 6 Comparison of parameters before and after comprehensive optimization of boiler combustion under medium load conditions
工况 | 锅炉负荷/MW | 运行氧质量分数/% | 燃尽风风门开度前、后墙A/B侧/% | 外二次风风门(1—8)开度/% | η/% | ρ(NO x )/ (mg⋅m-3) |
---|---|---|---|---|---|---|
原始工况 | 724.958 | 4.106 | 100.000/32.899/ 100.000/32.298 | 20.388/50.048/ 99.687/99.880/ 99.580/95.478/ 49.943/20.462 | 92.580 | 344.440 |
加权-粒子群算法 a=0.5,b=0.5 | 724.958 | 3.839 | 100.000/97.965/ 100.000/85.562 | 20.415/50.045/ 99.669/99.763/ 99.434/95.463/ 49.933/20.458 | 92.572 | 276.563 |
MOPSO算法 | 724.958 | 3.862 | 95.934/76.255/ 98.967/97.221 | 20.462/50.048/ 99.674/99.717/ 99.593/95.454/ 49.933/20.456 | 92.626 | 291.955 |
1 | 赵敏华,胡毅,李金,等 .使用博弈差分算法的电站锅炉高效低污染燃烧均衡优化[J].化工学报,2017,68(6):2455-2464. doi:10.11949/j.issn.0438-1157.20161480 |
ZHAO M H, HU Y, LI J,et al. Equilibrium optimization for high efficiency and low pollution combustion of power-generation boilers using game differential evolution algorithm[J].CIESC Journal,2017,68(6):2455-2464. doi:10.11949/j.issn.0438-1157.20161480 | |
2 | 关新河,李彦,朱群志,等 .1 000 MW超超临界锅炉低NO x 燃烧器改造的数值模拟研究[J].中国电机工程学报,2019,39(8):2376-2383. doi:10.13334/j.0258-8013.pcsee.181513 |
GUAN X H, LI Y, ZHU Q Z,et al .Numerical simulation study on retrofit of low NO x burner for 1 000 MW ultra-supercritical boiler[J].Proceedings of the CSEE,2019,39(8):2376-2383. doi:10.13334/j.0258-8013.pcsee.181513 | |
3 | 张志勇,莫华,王猛,等 .600 MW燃煤机组烟气污染物控制研究[J].中国电力,2022,55(5):204-210. |
ZHANG Z Y, MO H, WANG M,et al .Study of flue gas pollutant control in a 600 MW coal-fired unit[J].Electric Power,2022,55(5):204-210. | |
4 | 温佳鑫,卜思齐,陈麒宇,等 .基于数据学习的新能源高渗透电网频率风险评估[J].发电技术,2021,42(1):40-47. doi:10.12096/j.2096-4528.pgt.20105 |
WEN J X, BU S Q, CHEN Q Y,et al .Data learning-based frequency risk assessment in a high-penetrated renewable power system[J].Power Generation Technology,2021,42(1):40-47. doi:10.12096/j.2096-4528.pgt.20105 | |
5 | 时浩,肖海平,刘彦鹏 .基于BP神经网络和最小二乘支持向量机的灰熔点预测和对比[J].发电技术,2022,43(1):139-146. doi:10.12096/j.2096-4528.pgt.20003 |
SHI H, XIAO H P, LIU Y P .Prediction and comparison of ash fusion temperatures based on BP neural network and least squares support vector machine[J].Power Generation Technology,2022,43(1):139-146. doi:10.12096/j.2096-4528.pgt.20003 | |
6 | 唐晨琪,陈林根,王文华,等 .基于NSGA-II算法的变温热源内可逆简单MCBC的性能优化[J].发电技术,2020,41(3):301-316. |
TANG C Q, CHEN L G, WANG W H,et al .Performance optimization of the endoreversible simple MCBC coupled to variable-temperature reservoirs based on NSGA-II Algorithm[J].Power Generation Technology,2020,41(3):301-316. | |
7 | 朱建华,李振清,许立长 .基于随机子空间方法的光伏变流器模态识别和分析[J].发电技术,2021,42(2):201-206. doi:10.12096/j.2096-4528.pgt.19141 |
ZHU J H, LI Z Q, XU L C .Modal identification and analysis of photovoltaic converter based on random subspace[J].Power Generation Technology,2021,42(2):201-206. doi:10.12096/j.2096-4528.pgt.19141 | |
8 | TAN P, XIA J, ZHANG C,et al .Modeling and reduction of NO x emissions for a 700 MW coal-fired boiler with the advanced machine learning method[J].Energy,2016,94:672-679. doi:10.1016/j.energy.2015.11.020 |
9 | SHIN Y, KIM Z, YU J,et al .Development of NO x reduction system utilizing artificial neural network (ANN) and genetic algorithm (GA)[J].Journal of Cleaner Production,2019,232:1418-1429. doi:10.1016/j.jclepro.2019.05.276 |
10 | TUTTLE J F, VESEL R, ALAGARSAMY S, et al .Sustainable NO x emission reduction at a coal-fired power station through the use of online neural network modeling and particle swarm optimization[J].Control Engineering Practice,2019,93:104167. doi:10.1016/j.conengprac.2019.104167 |
11 | 王培红,李磊磊,陈强,等 .人工智能技术在电站锅炉燃烧优化中的应用研究[J].中国电机工程学报,2004,24(4):184-188. doi:10.3321/j.issn:0258-8013.2004.04.034 |
WANG P H, LI L L, CHEN Q,et al .Research on applications of artificial intelligence to combustion optimization in a coal-fired boiler[J].Proceedings of the CSEE,2004,24(4):184-188. doi:10.3321/j.issn:0258-8013.2004.04.034 | |
12 | 周昊,朱洪波,茅建波,等 .大型四角切圆燃烧锅炉NO x 排放特性的神经网络模型[J].中国电机工程学报,2002,22(1):33-37. doi:10.3321/j.issn:0258-8013.2002.01.007 |
ZHOU H, ZHU H B, MAO J B,et al .An artificial neural network model on NO x emission property of a high capacity tangentially firing boiler[J]. Proceedings of the CSEE,2002,22(1):33-37. doi:10.3321/j.issn:0258-8013.2002.01.007 | |
13 | 周昊,朱洪波,岑可法 .基于人工神经网络和遗传算法的火电厂锅炉实时燃烧优化系统[J].动力工程,2003,23(5):2665-2669. doi:10.3321/j.issn:1000-6761.2003.05.012 |
ZHOU H, ZHU H H, CEN K F .An on-line boiler operating optimization system based on the neural network and the genetic algorithms[J].Power Engineering,2003,23(5):2665-2669. doi:10.3321/j.issn:1000-6761.2003.05.012 | |
14 | ZHENG L L, ZHOU H, WANG C L,et al .Combining support vector regression and ant colony optimization to reduce NO x emissions in coal-fired utility boilers[J].Energy & Fuels,2008,22(2):1034-1040. doi:10.1021/ef700451v |
15 | SMOLA A J, SCHöLKOPF B .A tutorial on support vector regression[J].Statistics and Computing,2004,14(3):199-222. doi:10.1023/b:stco.0000035301.49549.88 |
16 | ZHOU H, TANG Q, YANG L,et al .Support vector machine based online coal identification through advanced flame monitoring[J].Fuel,2014,117:944-951. doi:10.1016/j.fuel.2013.10.041 |
17 | AHMED F, CHO H J, KIM J K,et al. A real-time model based on least squares support vector machines and output bias update for the prediction of NO x emission from coal-fired power plant[J].Korean Journal of Chemical Engineering,2015,32(6):1029-1036. doi:10.1007/s11814-014-0301-2 |
18 | 赵国钦,蓝茂蔚,李杨,等 .基于最小二乘支持向量机的火电厂烟气含氧量预测模型优化研究[J].发电技术,2023,44(4):534-542. doi:10.12096/j.2096-4528.pgt.21088 |
ZHAO G Q, LAN M W, LI Y,et al. Study on optimization of prediction model of flue gas oxygen content in thermal power plant based on least squares support vector machine[J].2023,44(4):534-542. doi:10.12096/j.2096-4528.pgt.21088 | |
19 | 李杨,蓝茂蔚,赵国钦,等 .基于PCA-PSO-LSSVM的电站锅炉效率预测模型研究[J].热力发电,2021,50(12):43-50. |
LI Y, LAN M W, ZHAO G Q,et al .Study on prediction model of utility boiler efficiency based on PCA-PSO-LSSVM[J].Thermal Power Generation,2021,50(12):43-50. | |
20 | 孙黎霞,鞠平,白景涛,等 .计及蓄电池寿命的冷热电联供型微电网多目标经济优化运行[J].发电技术,2020,41(1):64-72. doi:10.12096/j.2096-4528.pgt.19175 |
SUN L X, JU P, BAI J T,et al. Multi-objective economic optimal operation of microgrid based on combined cooling, heating and power considering battery life[J].Power Generation Technology,2020,41(1):64-72. doi:10.12096/j.2096-4528.pgt.19175 | |
21 | 吕玉坤,彭鑫,赵锴 .电站锅炉热效率和NO x 排放混合建模与优化[J].中国电机工程学报,2011,31(26):16-22. |
LÜ Y K, PENG X, ZHAO K .Hybrid modeling optimization of thermal efficiency and NO x emission of utility boiler[J].Proceedings of the CSEE,2011,31(26):16-22. | |
22 | 蓝茂蔚,李杨,赵国钦,等 .基于MAPSO优化LSSVM的锅炉燃烧建模研究[J].中南大学学报(自然科学版),2022,53(4):1506-1515. |
LAN M W, LI Y, ZHAO G Q,et al .Study on boiler combustion modeling based on MAPSO optimizing LSSVM model parameters[J].Journal of Central South University (Science and Technology),2022,53(4):1506-1515. | |
23 | COELLO C A C, PULIDO G T, LECHUGA M S .Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):256-279. doi:10.1109/tevc.2004.826067 |
24 | 徐旭常,周力行 .燃烧技术手册[M].北京:化学工业出版社,2008:1368-1378. |
XU X C, ZHOU L X .Combustion technology manual[M].Beijing:Chemical Industry Press,2008:1368-1378. |
[1] | Jun LIU, Yi DEND, Yanxi YANG, Yonggui WEI, Yanhui XUE, Wenwen SHI. Ash Accumulation State Identification for Infrared Compensation Images of Air Preheater Rotor Based on Deep Learning Method [J]. Power Generation Technology, 2022, 43(3): 510-517. |
[2] | Chenqi TANG,Lingen CHEN,Wenhua WANG,Huijun FENG,Shaojun XIA. Performance Optimization of Endoreversible Simple MCBC Coupled to Variable-temperature Reservoirs Based on NSGA-Ⅱ Algorithm [J]. Power Generation Technology, 2020, 41(3): 301-316. |
[3] | Lixia SUN,Ping JU,Jingtao BAI,Tiantian LIU. Multi-objective Economic Optimal Operation of Microgrid Based on Combined Cooling, Heating and Power Considering Battery Life [J]. Power Generation Technology, 2020, 41(1): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||