Power Generation Technology ›› 2022, Vol. 43 ›› Issue (6): 823-833.DOI: 10.12096/j.2096-4528.pgt.21129
• Smart Grid • Next Articles
Yi CHEN1, Yingxin XU1, Dongjie XU1, Xiang GAO2
Received:
2021-12-01
Published:
2022-12-31
Online:
2023-01-03
Supported by:
CLC Number:
Yi CHEN, Yingxin XU, Dongjie XU, Xiang GAO. Optimal Configuration and Performance Analysis of Terminal Multi-energy Complementary System[J]. Power Generation Technology, 2022, 43(6): 823-833.
设备类型 | 技术参数 | 数值 | 设备类型 | 技术参数 | 数值 |
---|---|---|---|---|---|
内燃机 | 额定功率容量 | 200 | 风机 | 切入风速 | 3 |
发电效率 | 0.37 | 切出风速 | 25 | ||
热电比 | 1.3 | 蓄电池 | 自放电率 | 0.001 | |
最低负载率 | 0.3 | 最大充电率 | 0.2 | ||
微燃机 | 额定功率容量 | 200 | 最大放电率 | 0.4 | |
发电效率 | 0.3 | 充电效率 | 0.95 | ||
热电比 | 1.9 | 放电效率 | 0.95 | ||
最低负载率 | 0.3 | SOC上限 | 0.9 | ||
光伏 | 降额因数 | 0.9 | SOC下限 | 0.2 | |
功率温度系数 | -0.5 | 燃气锅炉 | 制热效率 | 0.92 | |
风机 | 额定功率容量 | 10 | 电制冷机 | 能效比 | 4 |
额定风速 | 10 | 吸收式制冷机 | 能效比 | 1.2 |
Tab. 1 Technical parameters of optional equipments
设备类型 | 技术参数 | 数值 | 设备类型 | 技术参数 | 数值 |
---|---|---|---|---|---|
内燃机 | 额定功率容量 | 200 | 风机 | 切入风速 | 3 |
发电效率 | 0.37 | 切出风速 | 25 | ||
热电比 | 1.3 | 蓄电池 | 自放电率 | 0.001 | |
最低负载率 | 0.3 | 最大充电率 | 0.2 | ||
微燃机 | 额定功率容量 | 200 | 最大放电率 | 0.4 | |
发电效率 | 0.3 | 充电效率 | 0.95 | ||
热电比 | 1.9 | 放电效率 | 0.95 | ||
最低负载率 | 0.3 | SOC上限 | 0.9 | ||
光伏 | 降额因数 | 0.9 | SOC下限 | 0.2 | |
功率温度系数 | -0.5 | 燃气锅炉 | 制热效率 | 0.92 | |
风机 | 额定功率容量 | 10 | 电制冷机 | 能效比 | 4 |
额定风速 | 10 | 吸收式制冷机 | 能效比 | 1.2 |
设备类型 | 固定初始投资/元 | 可变初始投资/(元/kW) | 固定运行维护/(元/kW) | 可变运行维护/[元/(kW∙h)] |
---|---|---|---|---|
内燃机 | 0 | 9 300 | 0.0 | 0.050 |
微燃机 | 0 | 13 660 | 0.0 | 0.102 |
光伏 | 0 | 5 190 | 2.0 | 0 |
风机 | 0 | 5 380 | 1.4 | 0 |
蓄电池 | 0 | 940 | 0.0 | 0 |
燃气锅炉 | 0 | 270 | 2.1 | 0 |
电制冷机 | 0 | 3 130 | 1.3 | 0 |
吸收式制冷机 | 131 530 | 4 650 | 12.8 | 0 |
Tab. 2 Economic parameters of optional equipments
设备类型 | 固定初始投资/元 | 可变初始投资/(元/kW) | 固定运行维护/(元/kW) | 可变运行维护/[元/(kW∙h)] |
---|---|---|---|---|
内燃机 | 0 | 9 300 | 0.0 | 0.050 |
微燃机 | 0 | 13 660 | 0.0 | 0.102 |
光伏 | 0 | 5 190 | 2.0 | 0 |
风机 | 0 | 5 380 | 1.4 | 0 |
蓄电池 | 0 | 940 | 0.0 | 0 |
燃气锅炉 | 0 | 270 | 2.1 | 0 |
电制冷机 | 0 | 3 130 | 1.3 | 0 |
吸收式制冷机 | 131 530 | 4 650 | 12.8 | 0 |
情形 | 指标权重 | ||
---|---|---|---|
β1 | β2 | β3 | |
1 | 1 | 0 | 0 |
2 | 0.8 | 0.1 | 0.1 |
3 | 0.1 | 0.8 | 0.1 |
4 | 0.1 | 0.1 | 0.8 |
Tab. 3 Weight coefficient of evaluation index in optimization target
情形 | 指标权重 | ||
---|---|---|---|
β1 | β2 | β3 | |
1 | 1 | 0 | 0 |
2 | 0.8 | 0.1 | 0.1 |
3 | 0.1 | 0.8 | 0.1 |
4 | 0.1 | 0.1 | 0.8 |
设备 | 情形1 | 情形2 | 情形3 | 情形4 | 参比 系统 |
---|---|---|---|---|---|
燃气发电机类型 | 内燃机 | 内燃机 | 内燃机 | 内燃机 | — |
燃气发电机台数 | 6 | 6 | 7 | 7 | 0 |
风机台数 | 10 | 10 | 10 | 10 | 0 |
光伏容量/kW | 1 000 | 1 000 | 1 000 | 1 000 | 0 |
电制冷机容量/kW | 628 | 601 | 529 | 521 | 703 |
吸收式制冷机容量/kW | 250 | 339 | 579 | 605 | 0 |
燃气锅炉容量/kW | 1 934 | 1 286 | 1 138 | 1 183 | 2 422 |
蓄电池容量/(kW⋅h) | 74 | 231 | 789 | 618 | 0 |
购电峰值功率/kW | 1 304 | 480 | 34 | 9 | 1 964 |
Tab. 4 System configuration in different situations
设备 | 情形1 | 情形2 | 情形3 | 情形4 | 参比 系统 |
---|---|---|---|---|---|
燃气发电机类型 | 内燃机 | 内燃机 | 内燃机 | 内燃机 | — |
燃气发电机台数 | 6 | 6 | 7 | 7 | 0 |
风机台数 | 10 | 10 | 10 | 10 | 0 |
光伏容量/kW | 1 000 | 1 000 | 1 000 | 1 000 | 0 |
电制冷机容量/kW | 628 | 601 | 529 | 521 | 703 |
吸收式制冷机容量/kW | 250 | 339 | 579 | 605 | 0 |
燃气锅炉容量/kW | 1 934 | 1 286 | 1 138 | 1 183 | 2 422 |
蓄电池容量/(kW⋅h) | 74 | 231 | 789 | 618 | 0 |
购电峰值功率/kW | 1 304 | 480 | 34 | 9 | 1 964 |
目标函数 | 情形1 | 情形2 | 情形3 | 情形4 |
---|---|---|---|---|
CSR/% | 19.61 | 19.21 | 17.53 | 17.60 |
CERR/% | 44.41 | 58.59 | 60.80 | 60.79 |
FFSR/% | 28.21 | 36.17 | 37.10 | 37.10 |
Tab. 5 System performance in different situations
目标函数 | 情形1 | 情形2 | 情形3 | 情形4 |
---|---|---|---|---|
CSR/% | 19.61 | 19.21 | 17.53 | 17.60 |
CERR/% | 44.41 | 58.59 | 60.80 | 60.79 |
FFSR/% | 28.21 | 36.17 | 37.10 | 37.10 |
项目 | 固定电价 | 当前电价 | 峰谷差增大40% |
---|---|---|---|
燃气发电机类型 | 内燃机 | 内燃机 | 内燃机 |
燃气发电机数量/台 | 6 | 6 | 6 |
风机数量/台 | 10 | 10 | 10 |
光伏额定容量/kW | 1 000 | 1 000 | 1 000 |
电制冷机额定容量/kW | 703 | 628 | 622 |
吸收式制冷机容量/kW | 0 | 250 | 269 |
燃气锅炉额定容量/kW | 1 347 | 1 934 | 1 974 |
蓄电池额定储能量/(kW⋅h) | 0 | 74 | 567 |
电网购电峰值功率/kW | 785 | 1 304 | 1 404 |
年总费用/万元 | 1 281.02 | 1 279.54 | 1 239.05 |
年CO2排放量/t | 5 921 256 | 7 556 452 | 7 579 245 |
年电网购电量/(kW⋅h) | 1 075 638 | 3 271 605 | 3 293 772 |
年化石燃料消耗量/(kW⋅h) | 29 237 158 | 32 455 435 | 32 525 800 |
年费用节省/% | 19.51 | 19.61 | 22.15 |
年CO2减排率/% | 56.44 | 44.41 | 44.24 |
年化石燃料节约率/% | 35.33 | 28.21 | 28.05 |
Tab. 6 Comparison of system optimization configuration schemes
项目 | 固定电价 | 当前电价 | 峰谷差增大40% |
---|---|---|---|
燃气发电机类型 | 内燃机 | 内燃机 | 内燃机 |
燃气发电机数量/台 | 6 | 6 | 6 |
风机数量/台 | 10 | 10 | 10 |
光伏额定容量/kW | 1 000 | 1 000 | 1 000 |
电制冷机额定容量/kW | 703 | 628 | 622 |
吸收式制冷机容量/kW | 0 | 250 | 269 |
燃气锅炉额定容量/kW | 1 347 | 1 934 | 1 974 |
蓄电池额定储能量/(kW⋅h) | 0 | 74 | 567 |
电网购电峰值功率/kW | 785 | 1 304 | 1 404 |
年总费用/万元 | 1 281.02 | 1 279.54 | 1 239.05 |
年CO2排放量/t | 5 921 256 | 7 556 452 | 7 579 245 |
年电网购电量/(kW⋅h) | 1 075 638 | 3 271 605 | 3 293 772 |
年化石燃料消耗量/(kW⋅h) | 29 237 158 | 32 455 435 | 32 525 800 |
年费用节省/% | 19.51 | 19.61 | 22.15 |
年CO2减排率/% | 56.44 | 44.41 | 44.24 |
年化石燃料节约率/% | 35.33 | 28.21 | 28.05 |
1 | REN F K, WEI Z Q, ZHAI X Q .Multi-objective optimization and evaluation of hybrid CCHP systems for different building types[J].Energy,2021,215:119096. |
2 | 张伟波,谢玉荣,杨帆,等 .多能互补分布式综合供能系统及典型开发方案研究[J].发电技术,2020,41(3):245-251. doi:10.12096/j.2096-4528.pgt.19025 |
ZHANG W B, XIE Y R, YANG F,et al .Research on multi-energy complementary distributed integrated energy supply system and typical development scheme[J].Power Generation Technology,2020,41(3):245-251. doi:10.12096/j.2096-4528.pgt.19025 | |
3 | 任福康,陈宜,王江江 .耦合太阳能和地热能的冷热电联供系统优化[J].工程热物理学报,2021,42(1):16-24. |
REN F K, CHEN Y, WANG J J .Optimization of combined cooling, heating, and power system coupled with solar and geothermal energies[J].Journal of Engineering Thermophysics,2021,42(1):16-24. | |
4 | 陈志昊,刘培,李政,等 .新区综合能源系统多目标最优化设计[J].工程热物理学报,2021,42(1):33-39. |
CHEN Z H, LIU P, LI Z,et al .Multi-objective optimal design for the integrated energy system of a new urban area[J].Journal of Engineering Thermophysics,,2021,42(1):33-39. | |
5 | 华丽云,孙坚栋,王振,等 .基于多能互补的综合能源控制系统研究及应用[J].浙江电力,2020,39(7):108-114. doi:10.19585/j.zjdl.202007018 |
HUA L Y, SUN J D, WANG Z,et al .Research and application of an integrated energy control system based on multi-energy complement[J].Zhejiang Electric Power,2020,39(7):108-114. doi:10.19585/j.zjdl.202007018 | |
6 | 高建伟,梁鹏程,高芳杰,等 .基于多方势博弈的综合能源系统运行优化[J].电力建设,2021,42(9):32-40. doi:10.12204/j.issn.1000-7229.2021.09.004 |
GAO J W, LIANG P C, GAO F J,et al. Operation optimization of integrated energy system considering multi-potential game[J].Electric Power Construction,2021,42(9):32-40. doi:10.12204/j.issn.1000-7229.2021.09.004 | |
7 | 程杉,魏昭彬,黄天力,等 .基于多能互补的热电联供型微网优化运行[J].电力系统保护与控制,2020,48(11):160-168. doi:10.19783/j.cnki.pspc.190932 |
CHENG S, WEI Z B, HUANG T L,et al .Multi-energy complementation based optimal operation of a microgrid with combined heat and power[J].Power System Protection and Control,2020,48(11):160-168. doi:10.19783/j.cnki.pspc.190932 | |
8 | 刘秀如 .多能互补集成优化系统分析与展望[J].节能,2018,37(9):28-33. |
LIU X R .Analysis and prospect of multi-energy complementary system[J].Energy Conservation,2018,37(9):28-33. | |
9 | 李高潮,卢怀宇,孙启德,等 .基于可再生能源的冷热电联供系统集成配置与运行优化研究进展[J].电网与清洁能源,2021,37(3):106-119. doi:10.3969/j.issn.1674-3814.2021.03.015 |
LI G C, LU H Y, SUN Q D,et al .Research progress in configuration and operation optimization of combined cooling,heating and power (CCHP) systems based on renewable energy[J].Power System and Clean Energy,2021,37(3):106-119. doi:10.3969/j.issn.1674-3814.2021.03.015 | |
10 | 王成山,洪博文,郭力,等 .冷热电联供微网优化调度通用建模方法[J].中国电机工程学报,2013,33(31):26-33. |
WANG C S, HONG B W, GUO L,et al .A General modeling method for optimal dispatch of combined cooling, heating and power microgrid[J].Proceedings of the CSEE,2013,33(31):26-33. | |
11 | 石方迪,罗凤章,徐建锋,等 .基于规划运行多场景一体化建模的多区域综合能源配电系统设备优化配置方法研究[J].电力系统及其自动化学报,2020,32(10):125-131. |
SHI F D, LUO F Z, XU J F,et al .Research on optimal equipment configuration method for multi-area integrated energy distribution system based on multi-scenario integration modelling of planning and operation[J].Proceedings of the CSU-EPSA,2020,32(10):125-131. | |
12 | 顾海飞,喻洁,李扬,等 .环境约束下含多能园区的新型城镇双层组合优化经济调度[J].中国电机工程学报,2020,40(8):2441-2453. |
GU F H, YU J, LI Y,et al .Bi-level joint optimization economic dispatch of new-type town with multi-energy parks under environmental constraints[J].Proceedings of the CSEE,2020,40(8):2441-2453. | |
13 | 廖宗毅,万文略,陈曦 .考虑价格引导机制的园区综合能源系统日前优化调度方法[J].南方电网技术,2021,15(9):53-60. doi:10.13648/j.cnki.issn1674-0629.2021.09.007 |
LIAO Z Y, WANG W L, CHEN X .Day-ahead optimal scheduling method of park integrated energy system considering price guidance mechanism[J].Southern Power System Technology,2021,15(9):53-60. doi:10.13648/j.cnki.issn1674-0629.2021.09.007 | |
14 | 欧阳斌,袁志昌,陆超,等 .考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J].发电技术,2020,41(1):19-29. doi:10.12096/j.2096-4528.pgt.19100 |
OUYANG B, YUAN Z C, LU C,et al .Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J].Power Generation Technology,2020,41(1):19-29. doi:10.12096/j.2096-4528.pgt.19100 | |
15 | 孟金英,李惟毅,任慧琴,等 .微燃机冷热电三联供系统运行策略优化分析[J].化工进展,2015,34(3):638-646. |
MENG J Y, LI W Y, REN H Q,et al .Operation strategy optimization analysis of CCHP system based on micro gas turbine[J].Chemical Industry and Engineering Progress,2015,34(3):638-646. | |
16 | REN F K, WANG J J, ZHU ST,et al .Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies[J].Energy Conversion and Management,2019,197:111866. |
17 | ZHANG G Q, WANG J J, REN F K,et al .Collaborative optimization for multiple energy stations in distributed energy network based on electricity and heat interchanges[J].Energy,2021,222:119987. |
18 | 吴雄,王秀丽,王建学,别朝红 .微网经济调度问题的混合整数规划方法[J].中国电机工程学报,2013,33(28):1-9. |
WU X, WANG X L, WANG J X,et al .Economic generation scheduling of a microgrid using mixed integer programming[J].Proceedings of the CSEE,2013,33(28):1-9. | |
19 | 杨允,刘鹏坤,向艳蕾. 有蓄能的多能互补耦合系统优化配置研究[J].热能动力工程,2021,36(1):108-116. doi:10.16146/j.cnki.rndlgc.2021.01.016 |
YANG Y, LIU P K, XIANG Y L .Optimal configuration of multi-energy complementary systems with storage[J].Journal of Engineering for Thermal Energy and Power,2021,36(1):108-116. doi:10.16146/j.cnki.rndlgc.2021.01.016 |
[1] | Jianhao SUN, Zhuang CHU. Optimal Configuration of Distributed Generation Considering Carbon Trading and Reactive Power Compensation [J]. Power Generation Technology, 2024, 45(1): 142-150. |
[2] | Baozhong ZHOU, Dunnan LIU, Jiguang ZHANG, Yi LI, Erfeng XU, Sheng BI. Research on Optimal Allocation of Multi-Energy Complementary Project of Wind-Solar-Thermal Integration [J]. Power Generation Technology, 2022, 43(1): 10-18. |
[3] | Zhichao LIU,Hongbin WANG,Hao SHA,Jinshu YANG,Shengxian CAO. Status and Prospect Analysis of Wind Power Utilization Technology in China [J]. Power Generation Technology, 2019, 40(4): 389-395. |
[4] | YU Qi-Yun, ZOU Xiao-hui. Application of Optimal Arrangement of Bionic Double Connected Tree Bundle in Power Plant [J]. Power Generation Technology, 2017, 38(4): 33-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||