Power Generation Technology ›› 2021, Vol. 42 ›› Issue (6): 715-726.DOI: 10.12096/j.2096-4528.pgt.21018
• Solar Thermal Power Generation Technology • Previous Articles Next Articles
Yuhao LUO(), Guodong WU(
), Yifan TANG(
), Pengfei BAI(
), Guofu ZHOU(
)
Received:
2021-03-17
Published:
2021-12-31
Online:
2021-12-23
Contact:
Pengfei BAI
Supported by:
CLC Number:
Yuhao LUO, Guodong WU, Yifan TANG, Pengfei BAI, Guofu ZHOU. Design and Experimental Analysis of Inner-Cooling Vapor Chamber Solar Collector[J]. Power Generation Technology, 2021, 42(6): 715-726.
参数 | 数值 |
尺寸/(mm×mm) | 550×275 |
焦距/mm | 500 |
纹距/mm | 0.5 |
厚度/mm | 3 |
透光率/% | 92 |
Tab. 1 Parameters of line-focus Fresnel lens
参数 | 数值 |
尺寸/(mm×mm) | 550×275 |
焦距/mm | 500 |
纹距/mm | 0.5 |
厚度/mm | 3 |
透光率/% | 92 |
参数 | 数值 |
长度/mm | 100 |
宽度/mm | 100 |
高度/mm | 11 |
侧壁厚度/mm | 3.5 |
顶面厚度/mm | 1 |
底面厚度/mm | 1 |
多孔结构 | 由烧结铜粉制成 |
工作介质 | 去离子水 |
冷却介质 | 去离子水 |
材料 | 紫铜 |
冷却方式 | 内嵌式水冷 |
冷却水管直径/mm | 6 |
冷却水管长度/mm | 394 |
导热系数/[W/(m2∙K)] | 2000 |
Tab. 2 Parameters of inner-cooling vapor chamber
参数 | 数值 |
长度/mm | 100 |
宽度/mm | 100 |
高度/mm | 11 |
侧壁厚度/mm | 3.5 |
顶面厚度/mm | 1 |
底面厚度/mm | 1 |
多孔结构 | 由烧结铜粉制成 |
工作介质 | 去离子水 |
冷却介质 | 去离子水 |
材料 | 紫铜 |
冷却方式 | 内嵌式水冷 |
冷却水管直径/mm | 6 |
冷却水管长度/mm | 394 |
导热系数/[W/(m2∙K)] | 2000 |
1 | 谢国辉, 李娜娜, 元博. 我国新能源开发路线图分析方法及模型[J]. 发电技术, 2020, 41 (6): 631- 637. |
XIE G H , LI N N , YUAN B . Analysis methods and model of new energy developing roadmap in China[J]. Power Generation Technology, 2020, 41 (6): 631- 637. | |
2 | 张哲旸, 巨星, 潘信宇, 等. 太阳能光伏-光热复合发电技术及其商业化应用[J]. 发电技术, 2020, 41 (3): 220- 230. |
ZHANG Z Y , JU X , PAN X Y , et al. Research and commercial application status of photovoltaic/concentrated solar power hybrid technology[J]. Power Generation Technology, 2020, 41 (3): 220- 230. | |
3 | DENIZ E , SERKAN C . Energy, exergy, economic and environmental (4E) analysis of a solar desalination system with humidification-dehumidification[J]. Energy Conversion and Management, 2016, 136, 12- 19. |
4 |
ZHANG X , LI H , LIU L , et al. Analysis of a feasible trigeneration system taking solar energy and biomass as co-feeds[J]. Energy Conversion and Management, 2016, 122, 74- 84.
DOI |
5 | 傅旭, 杨欣, 汪莹, 等. 光热电站容量效益评估及影响因素研究[J]. 电力工程技术, 2021, 40 (3): 186- 192. |
FU X , YANG X , WANG Y , et al. The capacity benefit evaluation of CSP power station and its influencing factors[J]. Electric Power Engineering Technology, 2021, 40 (3): 186- 192. | |
6 | 李耀华, 孔力. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34 (4): 426- 433. |
LI Y H , KONG L . Developing Solar and Wind Power Generation Technology to Accelerate China's Energy Transformation[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34 (4): 426- 433. | |
7 | 上官小英, 常海青, 梅华强. 太阳能发电技术及其发展趋势和展望[J]. 能源与节能, 2019, (3): 60- 63. |
SHANGGUAN X W , CHANG H Q , MEI H Q . Solar power generation technologies and their development trends and prospects[J]. Energy and Conservation, 2019, (3): 60- 63. | |
8 | 童家麟, 吕洪坤, 李汝萍, 等. 国内光热发电现状及应用前景综述[J]. 浙江电力, 2019, 38 (12): 25- 30. |
TONG J L , LYU H K , LI R P , et al. Review on status and application prospect of domestic CSP generation[J]. Zhejiang Electric Power, 2019, 38 (12): 25- 30. | |
9 | 佟锴, 杨立军, 宋记锋, 等. 聚光太阳能集热场先进技术综述[J]. 发电技术, 2019, 40 (5): 413- 425. |
TONG K , YANG L J , SONG J F , et al. Review on advanced technology of concentrated solar power concentrators[J]. Power Generation Technology, 2019, 40 (5): 413- 425. | |
10 | 李克勋, 宗明珠, 魏高升. 地热能及与其他新能源联合发电综述[J]. 发电技术, 2020, 41 (1): 79- 87. |
LI K X , ZONG M Z , WEI G S . Overview of geothermal power generation and joint power generation with other new energy sources[J]. Power Generation Technology, 2020, 41 (1): 79- 87. | |
11 | 刘亚君, 顾炜莉, 王蒙, 等. 槽式太阳能集热器聚光面能流分布及传热特性[J]. 建筑热能通风空调, 2020, 39 (1): 32- 35. |
LIU Y J , GU W L , WANG M , et al. Energy distribution and heat transfer characteristics of concentrating surface of parabolic trough solar collector[J]. Building Energy&Environment, 2020, 39 (1): 32- 35. | |
12 |
王蒙, 顾炜莉, 易小芳, 等. 槽式太阳能集热器集热管热性能影响因素分析[J]. 建筑热能通风空调, 2020, 39 (10): 16- 19.
DOI |
WANG M , GU W L , YI X F , et al. Analysis of influencing factors on thermal performance of heat pipe of trough solar collector[J]. Building Energy&Environment, 2020, 39 (10): 16- 19.
DOI |
|
13 | 郝梦琳, 高丽媛, 杨宾, 等. 槽式太阳能集热系统的实验研究[J]. 工程热物理学报, 2018, 39 (11): 2507- 2511. |
HAO M L , GAO L Y , YANG B , et al. Experimental investigation on the parabolic trough solar collector system[J]. Journal of Engineering Thermophysics, 2018, 39 (11): 2507- 2511. | |
14 | 张云鹏, 孔莉, 林志坚, 等. 槽式太阳能聚焦集热器太阳跟踪方式的优化研究[J]. 太阳能, 2021, (9): 31- 38. |
ZHANG Y P , KONG L , LIN Z J , et al. Optimization of solar tracking modes for trough solar focusing collector[J]. Solar Energy, 2021, (9): 31- 38. | |
15 |
惠永琦, 祝志华, 盛腾飞. 槽式太阳能集热系统性能的研究[J]. 能源与节能, 2021, (8): 28- 31.
DOI |
HUI Y Q , ZHU Z H , SHENG T F . Study on performance of trough solar heat collecting system[J]. Energy and Conservation, 2021, (8): 28- 31.
DOI |
|
16 | 张智博, 赵晓辉, 韩伟, 等. 槽式集热器布置方式的比较研究[J]. 电力勘测设计, 2021, (8): 68- 72. |
ZHANG Z B , ZHAO X H , HAN W , et al. Comparison study on layout modes of parabolic trough collectors[J]. Electric Power Survey&Design, 2021, (8): 68- 72. | |
17 | 周凌宇. 基于方形腔体吸收器的菲涅尔太阳能集热器及单/双效吸收式太阳能空调系统[D]上海: 上海交通大学, 2016. |
ZHOU L Y. Study on Fresnel solar collector with rectangular cavity receiver and application of single/double effect absorption solar cooling system[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
18 |
宋景慧, 马继帅, 湛志钢, 等. 线性菲涅尔集热器光学特性实例分析与模拟[J]. 动力工程学报, 2016, 36 (7): 563- 568.
DOI |
SONG J H , MA J S , ZHAN Z G , et al. Optical analysis and simulation of a linear Fresnel solar collector[J]. Journal of Chinese Society of Power Engineering, 2016, 36 (7): 563- 568.
DOI |
|
19 |
赵晓凯, 代彦军, 林蒙. 基于线性菲涅尔反射镜的二次反射塔式太阳集热器性能分析[J]. 太阳能学报, 2015, 36 (8): 1909- 1914.
DOI |
ZHAO X K , DAI Y J , LIN M . Performance analysis of beam-down tower solar collector based on linear Fresnel reflector technique[J]. Acta Energiae Solaris Sinica, 2015, 36 (8): 1909- 1914.
DOI |
|
20 | 闫素英, 陈壮, 赵晓燕, 等. 严寒地区小型线性菲涅尔聚光集热器末端损失与补偿[J]. 农业工程学报, 2019, 35 (6): 206- 213. |
YAN S Y , CHEN Z , ZHAO X Y , et al. End-loss and compensation for small linear Fresnel collectors in severe cold area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (6): 206- 213. | |
21 | 宋景慧, 马继帅, 代彦军. 线性菲涅尔集热器镜场设计理论与光学分析[J]. 可再生能源, 2016, 34 (1): 1- 8. |
SONG J J , MA J S , DAI Y J . Design theory and optical analysis of the linear Fresnel collector's mirror field[J]. Renewable Energy Resources, 2016, 34 (1): 1- 8. | |
22 | 谢文韬. 菲涅尔太阳能集热器集热性能研究与热迁移因子分析[D]. 上海: 上海交通大学, 2013. |
XIE W T. Investigation on thermal performance of Fresnel solar collectors and analysis on heat removal factors[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
23 |
卢梓健, 黄金, 胡艳鑫, 等. 滑移式线性菲涅尔太阳能集热器的设计及实验研究[J]. 广东工业大学学报, 2019, 36 (5): 86- 93.
DOI |
LU Z J , HUANG J , HU Y X , et al. Design and experimental study of sliding linear Fresnel solar collector[J]. Journal of Guangdong University of Technology, 2019, 36 (5): 86- 93.
DOI |
|
24 |
马广田. 基于菲涅尔透镜聚热器的太阳追踪系统设计[J]. 现代制造技术与装备, 2016, (6): 27- 30.
DOI |
MA G T . Design of sun tracking system based on Fresnel lens heat collector[J]. Modern Manufacturing Technology and Equipment, 2016, (6): 27- 30.
DOI |
|
25 | WILLARS-RODRÍGUEZ F J , CHÁVEZ-URBIOL A E , VOROBIEV A P , et al. Investigation of solar hybrid system with concentrating Fresnel lens, photovoltaic and thermoelectric generators[J]. International Journal of Energy Research, 2017, 41 (3): 156- 162. |
26 | 祝子夜, 唐智锋, 马雨晴, 等. 一种圆柱面线聚焦菲涅尔式太阳能中温集热系统的研究[J]. 太阳能, 2017, (2): 33- 37. |
ZHU Z Y , TANG Z F , MA Y Q , et al. Study on a cylindrical line focusing Fresnel solar medium temperature heat collecting system[J]. Solar Energy, 2017, (2): 33- 37. | |
27 | 周凌宇, 代彦军, 李显, 等. 一种采用腔体吸收器的线性菲涅尔太阳集热器性能分析与优化[J]. 太阳能学报, 2018, 39 (3): 704- 712. |
ZHOU L Y , DAI Y J , LI X , et al. Performance analysis and optimization of a linear Fresnel solar collector using cavity absorber[J]. ACTA Energiae Solar Aris Sinica, 2018, 39 (3): 704- 712. | |
28 | 刘少锋, 杨正武, 司鹏飞, 等. 水平轴跟踪槽式太阳能集热器动态集热量计算与分析[J]. 制冷与空调(四川), 2020, 34 (2): 197- 201. |
LIU S F , YANG Z W , SI P F , et al. Calculation and analysis of dynamic solar energy heat collection by parabolic trough horizontal axis tracking[J]. Refrigeration and Air Conditioning (Sichuan), 2020, 34 (2): 197- 201. | |
29 | 侯静, 郑宏飞, 常泽辉, 等. 一种复合抛物面槽式太阳能聚光集热器的性能研究[J]. 可再生能源, 2015, 33 (7): 977- 981. |
HOU J , ZHENG H F , CHANG Z H , et al. Performance research into a novel CPC trough solar collector[J]. Renewable Energy Resources, 2015, 33 (7): 977- 981. | |
30 | LI Y C , JIAO F , CHEN F , et al. Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber-Science Direct[J]. Renewable Energy, 2020, 168, 913- 926. |
31 | ZHANG G M , WEI J J , ZHANG LA , et al. A comprehensive study on the effects of truncation positions of the compound parabolic concentrator eliminating multiple reflections on the performances of concentrating photovoltaic and thermal system[J]. Applied Thermal Engineering, 2020, 183, 116162. |
32 | PROELL M , OSGYAN P , KARRER H , et al. Experimental efficiency of a low concentrating CPC PVT flat plate collector[J]. Solar Energy, 2017, 147, 463- 469. |
33 | LIU L , JIA Y , LIN Y , et al. Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry[J]. Energy Conversion&Management, 2017, 153, 106- 114. |
34 | WANG J , CHEN Y , LIOR N , et al. Energy, exergy and environmental analysis of a hybrid combined cooling heating and power system integrated with compound parabolic concentrated-photovoltaic thermal solar collectors[J]. Energy, 2019, 185, 463- 476. |
35 | 张欣宇, 杨晓宏. 双面受热太阳能平板接收器热性能模拟研究[J]. 热能动力工程, 2019, 34 (10): 186- 192. |
ZHANG X Y , YANG X H . Thermal performance simulation study of solar double heating flat plate receiver[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34 (10): 186- 192. | |
36 | 黄平瑞, 周震, 魏高升, 等. 基于多孔陶瓷的体吸收太阳能集热器性能分析[J]. 发电技术, 2019, 40 (1): 83- 90. |
HUANG P R , ZHOU Z , WEI G S , et al. Performance analysis of volumetric solar receiver based on porous foam ceramics[J]. Power Generation Technology, 2019, 40 (1): 83- 90. | |
37 | 张维蔚, 薛奇成, 聂晶, 等. 槽式太阳能真空管接收器环形区域结构及气体优化[J]. 农业工程学报, 2017, 33 (20): 257- 264. |
ZHANG W W , XUE Q C , NIE J , et al. Structure and gas optimization of annular region of trough solar vacuum tube receiver[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (20): 257- 264. | |
38 | 李雪岭, 常华伟, 段晨, 等. 一种基于新结构的线性腔式太阳能集热器研究[J]. 太阳能学报, 2021, 42 (2): 8- 13. |
LI X L , CHANG H W , DUAN C , et al. Study on a linear cavity solar collector based on a new structure[J]. ACTA Energiae Solar Aris Sinica, 2021, 42 (2): 8- 13. | |
39 | 闫崇强, 颜士峰, 肖胜鑫, 等. 双层玻璃盖板平板型太阳能集热器的热性能研究[J]. 太阳能, 2020, (10): 71- 74. |
YAN C Q , YAN S F , XIAO S X , et al. Study on thermal performance of flat solar collector with double glass cover plate[J]. Solar Energy, 2020, (10): 71- 74. | |
40 | 李金平, 叶何立, 邓聪聪, 等. 集热方式对全玻璃真空管太阳能热水器性能的影响[J]. 太阳能学报, 2021, 42 (1): 103- 111. |
LI J P , YE H L , DENG C C , et al. Influence of heat collecting mode on performance of all-glass vacuum tube solar water heater[J]. ACTA Energiae Solar Aris Sinica, 2021, 42 (1): 103- 111. | |
41 | 黄媛. 复合抛物面聚光器的性能分析和应用研究[D]. 北京: 中国科学院大学, 2019. |
HUANG Y. Performance analysis on compound parabolic concentrator and its applications[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
42 | 谢胡凌, 魏进家, 高阳, 等. 消除复合抛物面聚光器二次反射的设计研究[J]. 动力工程学报, 2015, 35 (7): 599- 604. |
XIE H L , WEI J J , GAO Y , et al. A new design method for compound parabolic concentrators by eliminating the secondary reflection[J]. Journal of Chinese Society of Power Engineering, 2015, 35 (7): 599- 604. | |
43 | 马鸣, 郑宏飞, 李家春. 复合抛物面聚光器(CPC)截短对其性能的影响[J]. 太阳能, 2011, (7): 33- 36. |
MA M , ZHENG H F , LI J C . The effect of compound paraboloidal concentrator (CPC) truncation on its performance[J]. Solar Energy, 2011, (7): 33- 36. | |
44 | BELLOS E , MATHIOULAKIS E , TZIVANIDIS C , et al. Experimental and numerical investigation of a linear Fresnel solar collector with flat plate receiver[J]. Energy Conversion and Management, 2016, 130, 44- 59. |
45 | WU G , LUO Y , BAI P , et al. Modeling and experimental analysis of an internally-cooled vapor chamber[J]. Energy Conversion and Management, 2021, 235, 114017. |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Study on Heat Loss Factors of Parabolic Trough Solar Collectors [J]. Power Generation Technology, 2023, 44(2): 229-234. |
[3] | Li XU, Feihu SUN, Zhi LI, Qiangqiang ZHANG. A Calculation Method of Average Fluid Temperature in Solar Collector [J]. Power Generation Technology, 2022, 43(3): 405-412. |
[4] | Lanhua LIU, Linwen DI, Xingwan DONG, Ruilin WANG. Study on Dynamic Characteristics of Parabolic Trough Solar Collector Circuit [J]. Power Generation Technology, 2021, 42(6): 673-681. |
[5] | Li XU, Feihu SUN, Jun LI, Qiangqiang ZHANG. Experimental Analysis of the Influence of Flow Rate on Heat Transfer Characteristics of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2021, 42(6): 665-672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||