Power Generation Technology ›› 2021, Vol. 42 ›› Issue (2): 280-287.DOI: 10.12096/j.2096-4528.pgt.19101
• Power Generation and Enviromental Protection • Previous Articles
Xuedong WANG(), Mingchao JIANG, Ang SONG
Received:
2020-02-05
Published:
2021-04-30
Online:
2021-04-29
参数 | 设计数据 | 参数 | 设计数据 | |
型式 | SLQS-Ⅱ | 水流动阻力/kPa | 18.414 | |
受热面积/m2 | 2 790 | 烟气流动阻力/Pa | 165 | |
给水流量/(t/h) | 267.84 | 总热功率/kW | 13 103 | |
进口水温/℃ | 105.5 | 管数(剖切)/根 | 2×1 104 | |
出口水温/℃ | 146.9 | 外径及壁厚/mm | 38×4 | |
进口烟温/℃ | 190 | 材质 | 20G | |
出口烟温/℃ | 140 | 设备总质量(含集箱)/t | 120 | |
平均烟速/(m/s) | 6.64 | 高×宽×深(管端)/(mm×mm×mm) | 7 240×4 600×8 400 | |
平均水速/(m/s) | 0.41 |
Tab. 1 Design parameters of low-pressure economizer
参数 | 设计数据 | 参数 | 设计数据 | |
型式 | SLQS-Ⅱ | 水流动阻力/kPa | 18.414 | |
受热面积/m2 | 2 790 | 烟气流动阻力/Pa | 165 | |
给水流量/(t/h) | 267.84 | 总热功率/kW | 13 103 | |
进口水温/℃ | 105.5 | 管数(剖切)/根 | 2×1 104 | |
出口水温/℃ | 146.9 | 外径及壁厚/mm | 38×4 | |
进口烟温/℃ | 190 | 材质 | 20G | |
出口烟温/℃ | 140 | 设备总质量(含集箱)/t | 120 | |
平均烟速/(m/s) | 6.64 | 高×宽×深(管端)/(mm×mm×mm) | 7 240×4 600×8 400 | |
平均水速/(m/s) | 0.41 |
参数 | 设计数据 | 参数 | 设计数据 | |
型式 | 螺旋翅片管 | 出口水温/℃ | 105~110 | |
进口烟温/℃ | 149 | 烟气压降/Pa | 980 | |
出口烟温/℃ | 96 | 烟气露点温度/℃ | 80.7 | |
进口水温/℃ | 68 |
Tab. 2 Design parameters of low-pressure economizer for desulfurization
参数 | 设计数据 | 参数 | 设计数据 | |
型式 | 螺旋翅片管 | 出口水温/℃ | 105~110 | |
进口烟温/℃ | 149 | 烟气压降/Pa | 980 | |
出口烟温/℃ | 96 | 烟气露点温度/℃ | 80.7 | |
进口水温/℃ | 68 |
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
发电机有功功率/MW | 219.517 | 199.791 | 179.836 | 159.838 |
主蒸汽压力/MPa | 13.054 | 13.126 | 13.115 | 11.648 |
主蒸汽温度/℃ | 533.71 | 535.09 | 531.72 | 535.55 |
主蒸汽流量/(t/h) | 665.599 | 599.439 | 536.780 | 476.586 |
再热蒸汽压力/MPa | 2.249 | 2.033 | 1.824 | 1.634 |
再热蒸汽温度/℃ | 533.41 | 533.37 | 532.67 | 530.90 |
再热蒸汽流量/(t/h) | 569.790 | 513.974 | 460.369 | 410.330 |
高排蒸汽压力/MPa | 2.557 | 2.311 | 2.076 | 1.859 |
高排蒸汽温度/℃ | 307.62 | 301.04 | 290.93 | 296.63 |
冷再蒸汽流量/(t/h) | 569.790 | 513.974 | 460.361 | 410.330 |
排汽压力/kPa | 8.856 | 8.250 | 7.797 | 7.527 |
给水压力/MPa | 15.280 | 14.965 | 14.649 | 13.050 |
给水温度/℃ | 244.82 | 240.22 | 234.73 | 230.17 |
给水流量/(t/h) | 659.444 | 592.013 | 535.131 | 465.526 |
低压省煤器进水流量/(t/h) | 326.499 | 268.407 | 249.993 | 188.429 |
低压省煤器进水温度/℃ | 69.36 | 69.88 | 69.04 | 69.72 |
低压省煤器回水温度/℃ | 119.09 | 122.54 | 124.36 | 127.12 |
试验热耗率/[kJ/(kW·h)] | 8 505.2 | 8 522.3 | 8 564.6 | 8 665.8 |
热耗率总修正系数 | 1.024 534 | 1.019 445 | 1.017 581 | 1.016 989 |
功率总修正系数 | 0.994 632 | 1.004 622 | 1.006 079 | 0.978 622 |
参数修正后的电功率/MW | 220.702 | 198.872 | 178.750 | 163.330 |
参数修正后的热耗率/[kJ/(kW·h)] | 8 301.5 | 8 359.8 | 8 416.7 | 8 521.1 |
Tab. 3 Main test results of conditions with low-pressure economizer operation
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
发电机有功功率/MW | 219.517 | 199.791 | 179.836 | 159.838 |
主蒸汽压力/MPa | 13.054 | 13.126 | 13.115 | 11.648 |
主蒸汽温度/℃ | 533.71 | 535.09 | 531.72 | 535.55 |
主蒸汽流量/(t/h) | 665.599 | 599.439 | 536.780 | 476.586 |
再热蒸汽压力/MPa | 2.249 | 2.033 | 1.824 | 1.634 |
再热蒸汽温度/℃ | 533.41 | 533.37 | 532.67 | 530.90 |
再热蒸汽流量/(t/h) | 569.790 | 513.974 | 460.369 | 410.330 |
高排蒸汽压力/MPa | 2.557 | 2.311 | 2.076 | 1.859 |
高排蒸汽温度/℃ | 307.62 | 301.04 | 290.93 | 296.63 |
冷再蒸汽流量/(t/h) | 569.790 | 513.974 | 460.361 | 410.330 |
排汽压力/kPa | 8.856 | 8.250 | 7.797 | 7.527 |
给水压力/MPa | 15.280 | 14.965 | 14.649 | 13.050 |
给水温度/℃ | 244.82 | 240.22 | 234.73 | 230.17 |
给水流量/(t/h) | 659.444 | 592.013 | 535.131 | 465.526 |
低压省煤器进水流量/(t/h) | 326.499 | 268.407 | 249.993 | 188.429 |
低压省煤器进水温度/℃ | 69.36 | 69.88 | 69.04 | 69.72 |
低压省煤器回水温度/℃ | 119.09 | 122.54 | 124.36 | 127.12 |
试验热耗率/[kJ/(kW·h)] | 8 505.2 | 8 522.3 | 8 564.6 | 8 665.8 |
热耗率总修正系数 | 1.024 534 | 1.019 445 | 1.017 581 | 1.016 989 |
功率总修正系数 | 0.994 632 | 1.004 622 | 1.006 079 | 0.978 622 |
参数修正后的电功率/MW | 220.702 | 198.872 | 178.750 | 163.330 |
参数修正后的热耗率/[kJ/(kW·h)] | 8 301.5 | 8 359.8 | 8 416.7 | 8 521.1 |
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
发电机有功功率/MW | 219.756 | 199.729 | 179.835 | 159.880 |
主蒸汽压力/MPa | 13.003 | 13.047 | 13.036 | 11.646 |
主蒸汽温度/℃ | 536.31 | 533.65 | 536.38 | 535.87 |
主蒸汽流量/(t/h) | 672.367 | 606.021 | 541.356 | 485.463 |
再热蒸汽压力/MPa | 2.284 | 2.063 | 1.839 | 1.659 |
再热蒸汽温度/℃ | 538.35 | 533.74 | 536.38 | 531.90 |
再热蒸汽流量/(t/h) | 577.538 | 520.819 | 463.347 | 416.512 |
高排蒸汽压力/MPa | 2.595 | 2.344 | 2.094 | 1.889 |
高排蒸汽温度/℃ | 310.80 | 301.53 | 294.97 | 297.01 |
冷再蒸汽流量/(t/h) | 574.977 | 518.320 | 463.342 | 416.512 |
排汽压力/kPa | 9.378 | 8.081 | 7.919 | 8.179 |
给水压力/MPa | 15.279 | 14.940 | 14.608 | 13.081 |
给水温度/℃ | 245.89 | 240.81 | 235.55 | 231.38 |
给水流量/(t/h) | 660.906 | 602.305 | 539.671 | 476.058 |
试验热耗率/[kJ/(kW·h)] | 8 640.3 | 8 628.3 | 8 660.3 | 8 807.4 |
热耗率总修正系数 | 1.026 368 | 1.019 033 | 1.016 718 | 1.021 188 |
功率总修正系数 | 0.991 410 | 1.000 050 | 1.002 288 | 0.974 868 |
参数修正后的电功率/MW | 221.660 | 199.719 | 179.425 | 164.002 |
参数修正后的热耗率/[kJ/(kW·h)] | 8 418.4 | 8 467.1 | 8 517.9 | 8 624.7 |
Tab. 4 Main test results of conditions without low-pressure economizer operation
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
发电机有功功率/MW | 219.756 | 199.729 | 179.835 | 159.880 |
主蒸汽压力/MPa | 13.003 | 13.047 | 13.036 | 11.646 |
主蒸汽温度/℃ | 536.31 | 533.65 | 536.38 | 535.87 |
主蒸汽流量/(t/h) | 672.367 | 606.021 | 541.356 | 485.463 |
再热蒸汽压力/MPa | 2.284 | 2.063 | 1.839 | 1.659 |
再热蒸汽温度/℃ | 538.35 | 533.74 | 536.38 | 531.90 |
再热蒸汽流量/(t/h) | 577.538 | 520.819 | 463.347 | 416.512 |
高排蒸汽压力/MPa | 2.595 | 2.344 | 2.094 | 1.889 |
高排蒸汽温度/℃ | 310.80 | 301.53 | 294.97 | 297.01 |
冷再蒸汽流量/(t/h) | 574.977 | 518.320 | 463.342 | 416.512 |
排汽压力/kPa | 9.378 | 8.081 | 7.919 | 8.179 |
给水压力/MPa | 15.279 | 14.940 | 14.608 | 13.081 |
给水温度/℃ | 245.89 | 240.81 | 235.55 | 231.38 |
给水流量/(t/h) | 660.906 | 602.305 | 539.671 | 476.058 |
试验热耗率/[kJ/(kW·h)] | 8 640.3 | 8 628.3 | 8 660.3 | 8 807.4 |
热耗率总修正系数 | 1.026 368 | 1.019 033 | 1.016 718 | 1.021 188 |
功率总修正系数 | 0.991 410 | 1.000 050 | 1.002 288 | 0.974 868 |
参数修正后的电功率/MW | 221.660 | 199.719 | 179.425 | 164.002 |
参数修正后的热耗率/[kJ/(kW·h)] | 8 418.4 | 8 467.1 | 8 517.9 | 8 624.7 |
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
主蒸汽流量/(t/h) | 665.599 | 599.439 | 536.780 | 476.586 |
投运低压省煤器热耗率/[kJ/(kW·h)] | 8 301.5 | 8 359.8 | 8 416.7 | 8 521.1 |
停运低压省煤器热耗率/[kJ/(kW·h)] | 8 418.3 | 8 456.5 | 8 524.9 | 8 620.2 |
热耗率差值/[kJ/(kW·h)] | 116.8 | 96.7 | 108.2 | 99.1 |
Tab. 5 Change of heat consumption rate with or without low-pressure economizer operation under the same main steam flow
名称 | 220 MW工况 | 200 MW工况 | 180 MW工况 | 160 MW工况 |
主蒸汽流量/(t/h) | 665.599 | 599.439 | 536.780 | 476.586 |
投运低压省煤器热耗率/[kJ/(kW·h)] | 8 301.5 | 8 359.8 | 8 416.7 | 8 521.1 |
停运低压省煤器热耗率/[kJ/(kW·h)] | 8 418.3 | 8 456.5 | 8 524.9 | 8 620.2 |
热耗率差值/[kJ/(kW·h)] | 116.8 | 96.7 | 108.2 | 99.1 |
项目 | 试验值 | 设计值 |
锅炉侧低省入口烟气温度/℃ | 169 | 190 |
锅炉侧低省出口烟气温度/℃ | 136.2 | 140.0 |
脱硫侧低省入口烟气温度/℃ | 136.2 | 149.0 |
脱硫侧低省出口烟气温度/℃ | 120.2 | 96.0 |
脱硫侧低省入口水温/℃ | 71 | 68 |
脱硫侧低省出口水温/℃ | 94 | 105~110 |
锅炉侧低省入口水温/℃ | 94.0 | 105.5 |
锅炉侧低省出口水温/℃ | 119.0 | 146.9 |
锅炉侧低省凝水流量/(t/h) | 331 | 340 |
锅炉侧低省平均对数温差/℃ | 45.99 | 38.64 |
脱硫侧低省平均对数温差/℃ | 45.61 | 33.20 |
锅炉侧低省换热系数/[W/(m2·℃)] | 39.85 | 42.95 |
脱硫侧低省换热系数/[W/(m2·℃)] | 59.39 | 62.67 |
锅炉侧低省烟气侧放热量/(kJ/h) | 34 928 753 | 59 410 050 |
脱硫侧低省烟气侧放热量/(kJ/h) | 32 160 010 | 62 974 653 |
Tab. 6 Test data and design data of low-pressure economizer on boiler side and desulfurization side
项目 | 试验值 | 设计值 |
锅炉侧低省入口烟气温度/℃ | 169 | 190 |
锅炉侧低省出口烟气温度/℃ | 136.2 | 140.0 |
脱硫侧低省入口烟气温度/℃ | 136.2 | 149.0 |
脱硫侧低省出口烟气温度/℃ | 120.2 | 96.0 |
脱硫侧低省入口水温/℃ | 71 | 68 |
脱硫侧低省出口水温/℃ | 94 | 105~110 |
锅炉侧低省入口水温/℃ | 94.0 | 105.5 |
锅炉侧低省出口水温/℃ | 119.0 | 146.9 |
锅炉侧低省凝水流量/(t/h) | 331 | 340 |
锅炉侧低省平均对数温差/℃ | 45.99 | 38.64 |
脱硫侧低省平均对数温差/℃ | 45.61 | 33.20 |
锅炉侧低省换热系数/[W/(m2·℃)] | 39.85 | 42.95 |
脱硫侧低省换热系数/[W/(m2·℃)] | 59.39 | 62.67 |
锅炉侧低省烟气侧放热量/(kJ/h) | 34 928 753 | 59 410 050 |
脱硫侧低省烟气侧放热量/(kJ/h) | 32 160 010 | 62 974 653 |
项目 | 数值 | 项目 | 数值 | |||
锅炉侧换热系数 | 设计值/[W/(m2·℃)] | 42.95 | 锅炉侧换热量 | 设计值/(kJ/h) | 59 410 050 | |
试验值/[W/(m2·℃)] | 39.85 | 试验值/(kJ/h) | 34 928 753 | |||
修正到设计值/[W/(m2·℃)] | 40.39 | 修正到设计值/(kJ/h) | 53 245 050 | |||
换热系数修正率 | 1.014 | 换热量修正率 | 1.524 | |||
脱硫侧换热系数 | 设计值/[W/(m2·℃)] | 62.67 | 脱硫侧换热量 | 设计值/(kJ/h) | 62 974 653 | |
试验值/[W/(m2·℃)] | 59.39 | 试验值/(kJ/h) | 32 160 010 | |||
修正到设计值/[W/(m2·℃)] | 58.80 | 修正到设计值/(kJ/h) | 56 439 753 | |||
换热系数修正率 | 0.990 | 换热量修正率 | 1.755 |
Tab. 7 Corrected calculation results for heat transfer coefficient and heat exchange amount of low pressure economizer
项目 | 数值 | 项目 | 数值 | |||
锅炉侧换热系数 | 设计值/[W/(m2·℃)] | 42.95 | 锅炉侧换热量 | 设计值/(kJ/h) | 59 410 050 | |
试验值/[W/(m2·℃)] | 39.85 | 试验值/(kJ/h) | 34 928 753 | |||
修正到设计值/[W/(m2·℃)] | 40.39 | 修正到设计值/(kJ/h) | 53 245 050 | |||
换热系数修正率 | 1.014 | 换热量修正率 | 1.524 | |||
脱硫侧换热系数 | 设计值/[W/(m2·℃)] | 62.67 | 脱硫侧换热量 | 设计值/(kJ/h) | 62 974 653 | |
试验值/[W/(m2·℃)] | 59.39 | 试验值/(kJ/h) | 32 160 010 | |||
修正到设计值/[W/(m2·℃)] | 58.80 | 修正到设计值/(kJ/h) | 56 439 753 | |||
换热系数修正率 | 0.990 | 换热量修正率 | 1.755 |
1 |
刘鹤忠, 连正权. 低温省煤器在火力发电厂中的运用探讨[J]. 电力勘测设计, 2010, (4): 32- 38.
DOI URL |
LIU H Z , LIAN Z Q . Application of low temperature saving coal device in generate electricity power plant[J]. Electric Power Survey & Design, 2010, (4): 32- 38.
DOI URL |
|
2 |
黄嘉驷, 李杨. 低压省煤器水侧系统连接方案优化分析[J]. 热力发电, 2011, 40 (3): 62- 64.
DOI |
HUANG J S , LI Y . Analysis of optimization in connecting scheme of water side system for low-pressure economizer[J]. Thermal Power Generation, 2011, 40 (3): 62- 64.
DOI |
|
3 |
马金祥, 陈军. 低温省煤器在火力发电厂中的优化设计[J]. 华电技术, 2016, 38 (7): 15- 19.
DOI URL |
MA J X , CHEN J . Optimal design of low temperature economizer in thermal power plant[J]. Huadian Technology, 2016, 38 (7): 15- 19.
DOI URL |
|
4 | 李允超, 赵大周, 刘博, 等. 火电厂烟气余热利用现状与展望[J]. 发电技术, 2019, 40 (3): 270- 275. |
LI Y C , ZHAO D Z , LIU B , et al. Status and prospect of waste heat utilization in power plant[J]. Power Generation Technology, 2019, 40 (3): 270- 275. | |
5 | 王秀红, 盛伟, 刘全山. 电站锅炉烟气余热利用技术方案研究[J]. 发电技术, 2019, 40 (3): 276- 280. |
WANG X H , SHENG W , LIU Q S . Study on technical scheme of flue gas waste heat utilization in utility boiler[J]. Power Generation Technology, 2019, 40 (3): 276- 280. | |
6 | 王学栋, 仲昭伟, 董洋, 等. 多变量因素下的锅炉低压省煤器节能效果测试与分析[J]. 发电技术, 2018, 39 (2): 140- 145. |
WANG X D , ZHONG Z W , DONG Y , et al. Analysis on energy saving effect of low-pressure economizer in boiler under multi-variable factors[J]. Power Generation Technology, 2018, 39 (2): 140- 145. | |
7 |
周新军, 房林铁, 张红方, 等. 330MW机组增装低压省煤器及经济性分析[J]. 节能, 2011, 347 (6): 16- 20.
DOI |
ZHOU X J , FANG L T , ZHANG H F , et al. Installation of low pressure economizer in 330MW unit and economic analysis[J]. Energy Conservation, 2011, 347 (6): 16- 20.
DOI |
|
8 |
俞启云, 刘志敏, 李刚. 超临界600MW机组低压省煤器改造热经济性分析[J]. 发电与空调, 2016, 37 (2): 33- 35.
DOI |
YU Q Y , LIU Z M , LI G . Thermal economic analysis of the low pressure coal saving device in supercritical 600MW unit[J]. Power Generation & Air Condition, 2016, 37 (2): 33- 35.
DOI |
|
9 |
胡秀涛. 燃气−蒸汽联合循环余热锅炉尾部烟气余热利用方式及经济性分析[J]. 发电与空调, 2017, 38 (3): 43- 46.
DOI URL |
HU X T . Methods and economic analysis of waste heat recovery from gas steam combined cycle waste heat boiler flue gas[J]. Power Generation & Air Condition, 2017, 38 (3): 43- 46.
DOI URL |
|
10 | 刘传玲, 柳明辉, 陈振江, 等. 投运低压省煤器后汽轮机背压变化分析[J]. 发电技术, 2018, 39 (4): 378- 381. |
LIU C L , LIU M H , CHEN Z J , et al. Analysis on the change of steam turbine back pressure under operation of low pressure economizer[J]. Power Generation Technology, 2018, 39 (4): 378- 381. | |
11 |
黄新元, 孙奉仲, 史月涛. 火电厂热系统增设低压省煤器的节能效果[J]. 热力发电, 2008, 37 (3): 56- 58.
DOI |
HUANG X Y , SUN F Z , SHI Y T . Energy-saving effect of additionally installed low-pressure economizer in thermodynamic system of thermal power plant[J]. Thermal Power Generation, 2008, 37 (3): 56- 58.
DOI |
|
12 |
韩爽, 王伟锋, 张朋飞, 等. 加装低压省煤器机组节能效果分析[J]. 热力发电, 2015, 44 (12): 133- 135.
DOI |
HAN S , WANG W F , ZHANG P F , et al. An analyzing example for unit energy-saving with low-pressure economizer[J]. Thermal Power Generation, 2015, 44 (12): 133- 135.
DOI |
|
13 | 林万超. 火电厂热系统节能理论[M]. 西安: 西安交通大学出版社, 1994. |
LIN W C . Energy saving theory of thermal system in thermal power plant[M]. Xi'an, China: Xi'an Jiaotong University Press, 1994. | |
14 | 周振起, 李晓东. 热力系统局部定量计算方法的研究[J]. 华东电力, 2013, 41 (6): 1364- 1367. |
ZHOU Z Q , LI X D . Method for local quantitative calculation of thermal system[J]. East China Electric Power, 2013, 41 (6): 1364- 1367. | |
15 |
张红方, 王勇, 田松峰, 等. 基于等效焓降法的低压省煤器系统经济性分析[J]. 节能技术, 2011, 29 (5): 457- 461.
DOI |
ZHANG H F , WANG Y , TIAN S F , et al. Economic analysis of low pressure economizer system based on the equivalent enthalpy drop method[J]. Energy Conservation Technology, 2011, 29 (5): 457- 461.
DOI |
|
16 |
温山, 闫维平, 常建刚, 等. 双级低压省煤器技术及其经济性分析[J]. 热力发电, 2013, 42 (2): 7- 11.
DOI |
WEN S , YAN W P , CHANG J G , et al. Two-stage low pressure economizer and its economic analysis[J]. Thermal Power Generation, 2013, 42 (2): 7- 11.
DOI |
|
17 |
康晓妮, 马文举, 马涛, 等. 320 MW机组加装低温省煤器的经济性研究[J]. 热力发电, 2012, 41 (5): 8- 11.
DOI |
KANG X N , MA W J , MA T , et al. Economic study on adding low-temperature economizer on a 320MW unit[J]. Thermal Power Generation, 2012, 41 (5): 8- 11.
DOI |
|
18 |
周洲, 刘楠. 低温省煤器节能效果评价方法[J]. 华电技术, 2018, 40 (4): 28- 29.
DOI |
ZHOU Z , LIU N . Evaluation method of energy saving effect of low temperature economizer[J]. Huadian Technology, 2018, 40 (4): 28- 29.
DOI |
|
19 |
马记. 1000MW超超临界机组加装低温省煤器改造及热经济性分析[J]. 华电技术, 2018, 40 (10): 37- 39.
DOI |
MA J . Transformation and thermal economy analysis on 1000MW ultra supercritical unit with low temperature fuel economizer[J]. Huadian Technology, 2018, 40 (10): 37- 39.
DOI |
|
20 | 任彬. 600MW超临界机组锅炉省煤器分级优化改造[J]. 华电技术, 2019, 41 (2): 69- 72. |
REN B . Classification and optimizing retrofit of economizer for 600MW supercritical boilers[J]. Huadian Technology, 2019, 41 (2): 69- 72. |
[1] | Jun DONG, Jianfang TANG, Chuncheng ZANG, Li XU, Zhifeng WANG. Development and Application of Test System for Ball Joints of Parabolic Trough Solar Collector [J]. Power Generation Technology, 2024, 45(2): 291-298. |
[2] | Xuedong WANG,Zhaowei ZHONG,Yang DONG,Tongbing ZHU. Analysis on Energy Saving Effect of Low-Pressure Economizer in Boiler Under Multi-variable Factors [J]. Power Generation Technology, 2018, 39(2): 140-145. |
[3] | YANG Yonglong, HU Da, WANG Fengji, LI Jing, ZHU Yue. Research on Multi-Pollutant Synergistic Removal Test by WESP [J]. Power Generation Technology, 2017, 38(5): 1-5. |
[4] | WEI Chao, TANG Zi-peng, FENG Yi-ming. Performance Test Technology for Photovoltaic Backsheet Materials and Its Application Analysis [J]. Power Generation Technology, 2017, 38(3): 33-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||