Power Generation Technology ›› 2025, Vol. 46 ›› Issue (1): 200-208.DOI: 10.12096/j.2096-4528.pgt.24149
• Power Generation and Environmental Protection • Previous Articles
Xinyu FANG1, Donghui XIA1, Mei HUANG2, Feng ZHANG2, Yonghua DING1
Received:
2024-07-18
Revised:
2024-09-11
Published:
2025-02-28
Online:
2025-02-27
Contact:
Donghui XIA
Supported by:
CLC Number:
Xinyu FANG, Donghui XIA, Mei HUANG, Feng ZHANG, Yonghua DING. Study on the Full Electromagnetic Model of Collective Thomson Scattering in Magnetic Confinement Fusion[J]. Power Generation Technology, 2025, 46(1): 200-208.
参数 | 数值 |
---|---|
磁场强度B/T | 5.6 |
入射波频率fi/GHz | 60 |
散射角 | 20 |
扰动波矢与磁场之间的夹角 | 10 |
电子密度ne/ | |
D离子密度nD/ | |
T离子密度nT/ | |
电子温度Te/keV | 25 |
D离子温度TD/keV | 25 |
T离子温度TT/keV | 25 |
快离子密度nf/ | |
快离子温度Tf/MeV | 3.5 |
入射-散射模式 | X-X |
Tab. 1 Input parameters for the scattering function of the ITER Device
参数 | 数值 |
---|---|
磁场强度B/T | 5.6 |
入射波频率fi/GHz | 60 |
散射角 | 20 |
扰动波矢与磁场之间的夹角 | 10 |
电子密度ne/ | |
D离子密度nD/ | |
T离子密度nT/ | |
电子温度Te/keV | 25 |
D离子温度TD/keV | 25 |
T离子温度TT/keV | 25 |
快离子密度nf/ | |
快离子温度Tf/MeV | 3.5 |
入射-散射模式 | X-X |
参数 | 数值 |
---|---|
磁场强度B/T | 2.6 |
入射波频率fi/GHz | 110 |
入射波功率Pi/kW | 50 |
散射角 | 159 |
扰动波矢与磁场之间的夹角 | 93 |
电子密度ne/ | |
电子温度Te/keV | 1 |
离子温度Ti/keV | 1 |
入射-散射模式 | O-O |
入射波束在测量处的半径wi/mm | 20 |
散射波束在测量处的半径ws/mm | 20 |
Tab. 2 Input parameters for the CTS spectra power density with different H ion contents
参数 | 数值 |
---|---|
磁场强度B/T | 2.6 |
入射波频率fi/GHz | 110 |
入射波功率Pi/kW | 50 |
散射角 | 159 |
扰动波矢与磁场之间的夹角 | 93 |
电子密度ne/ | |
电子温度Te/keV | 1 |
离子温度Ti/keV | 1 |
入射-散射模式 | O-O |
入射波束在测量处的半径wi/mm | 20 |
散射波束在测量处的半径ws/mm | 20 |
参数 | 数值 |
---|---|
磁场强度B/T | 2.0 |
入射波功率Pi/kW | 100 |
电子密度ne/ | |
电子温度Te/keV | 1.5 |
D离子密度nD/ | |
D离子温度TD/keV | 1.5 |
入射-散射模式/ | O-O |
快离子密度nf/ | |
快离子温度Tf/keV | 45 |
入射波束在测量处的半径wi/mm | 20 |
散射波束在测量处的半径ws/mm | 20 |
Tab. 3 Input parameters for spectra power density of the HL-2A device
参数 | 数值 |
---|---|
磁场强度B/T | 2.0 |
入射波功率Pi/kW | 100 |
电子密度ne/ | |
电子温度Te/keV | 1.5 |
D离子密度nD/ | |
D离子温度TD/keV | 1.5 |
入射-散射模式/ | O-O |
快离子密度nf/ | |
快离子温度Tf/keV | 45 |
入射波束在测量处的半径wi/mm | 20 |
散射波束在测量处的半径ws/mm | 20 |
1 | MOSEEV D, SALEWSKI M, GARCIA-MUOZ M,et al .Recent progress in fast-ion diagnostics for magnetically confined plasmas[J].Reviews of Modern Plasma Physics,2018,2(1):7. doi:10.1007/s41614-018-0019-4 |
2 | NIELSEN S K, MICHELSEN P K, HANSEN S K,et al .Recent development of collective Thomson scattering for magnetically confined fusion plasmas[J].Physica Scripta,2017,92(2):024001. doi:10.1088/1402-4896/92/2/024001 |
3 | VAHALA L, VAHALA G, SIGMAR D J .Effects of alpha particles on the scattering function in CO2 laser scattering[J].Nuclear Fusion,1986,26(1):51-60. doi:10.1088/0029-5515/26/1/005 |
4 | VAHALA L, VAHALA G, SIGMAR D J .Effect of electrostatic scattering parameters on the direct detection of fusion alphas[J].Nuclear Fusion,1988,28(9):1595-1602. doi:10.1088/0029-5515/28/9/008 |
5 | HUGHES T P, SMITH S R P .Calculations of Thomson scattering functions for alpha particle diagnostics in JET plasmas[J].Nuclear Fusion,1988,28(8):1451-1457. doi:10.1088/0029-5515/28/8/012 |
6 | AAMODT R E, RUSSELL D A .Alpha particle detection by electromagnetic scattering off of plasma fluctuations[J].Nuclear Fusion,1992,32(5):745-755. doi:10.1088/0029-5515/32/5/i03 |
7 | BINDSLEV H .A quantitative study of scattering from electromagnetic fluctuations in plasmas[J].Journal of Atmospheric and Terrestrial Physics,1996,58(8/9):983-989. doi:10.1016/0021-9169(95)00129-8 |
8 | NIELSEN S K, BINDSLEV H, PORTE L,et al .Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR[J].Physical Review E,2008,77(1):016407. doi:10.1103/physreve.77.016407 |
9 | SALPETER E E .Electron density fluctuations in a plasma[J].Physical Review,1960,120(5):1528-1535. doi:10.1103/physrev.120.1528 |
10 | BINDSLEV H .Three-wave mixing and Thomson scattering in plasmas[J].Plasma Physics and Controlled Fusion,1993,35(11):1615-1640. doi:10.1088/0741-3335/35/11/009 |
11 | KORSHOLM S B, GONÇALVES B, GUTIERREZ H E,et al .Design and development of the ITER CTS diagnostic[J].EPJ Web of Conferences,2019,203:03002. doi:10.1051/epjconf/201920303002 |
12 | RASMUSSEN J, STEJNER M, JENSEN T,et al .Inference of α-particle density profiles from ITER collective Thomson scattering[J].Nuclear Fusion,2019,59(9):096051. doi:10.1088/1741-4326/ab2f50 |
13 | KORSHOLM S B, CHAMBON A, GONÇALVES B,et al .ITER collective Thomson scattering:preparing to diagnose fusion-born alpha particles (invited)[J].Review of Scientific Instruments,2022,93(10):103539. doi:10.1063/5.0101867 |
14 | KORSHOLM S B, STEJNER M, BINDSLEV H,et al .Measurements of intrinsic ion Bernstein waves in a tokamak by collective Thomson scattering[J].Physical Review Letters,2011,106(16):165004. doi:10.1103/physrevlett.106.165004 |
15 | STEJNER M, NIELSEN S K, BINDSLEV H,et al .Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering[J].Plasma Physics and Controlled Fusion,2011,53(6):065020. doi:10.1088/0741-3335/53/6/065020 |
16 | 张家龙,宋彭,瞿体明 .磁约束可控核聚变装置的磁体系统综述[J].发电技术,2024,45(6):995-1015. |
ZHANG J L, SONG P, LI C, QU T M,et al .Overview of magnetic confinement controlled nuclear fusion reactors and superconducting magnet technologies[J].Power Generation Technology,2024,45(6):995-1015. | |
17 | 侯玉梅 .HL-2A 装置中高能量粒子驱动的非线性不稳定行为研究[D].合肥:中国科学技术大学,2019. doi:10.1088/1741-4326/aacf46 |
HOU Y M .Study of nonlinear instabilities driven by energetic particles in HL-2A Tokamak[D].Hefei:University of Science and Technology of China,2019. doi:10.1088/1741-4326/aacf46 | |
18 | XU M, DUAN X R, LIU Y,et al .Overview of HL-2A recent experiments[J].Nuclear Fusion, 2019,59(11): 112017. |
19 | HUANG M, RAO J, LI B,et al .Recent progress of 2 MW 140 GHz ECRH system on HL-2A[J].EPJ Web of Conferences,2012,32:04012. doi:10.1051/epjconf/20123204012 |
20 | WANG H, RAO J, HUANG M,et al .Commissioning results of the 0.5 MW/68 GHz/1.0 s gyrotron on HL-2A electron cyclotron resonance heating system[J].Fusion Engineering and Design,2015,101:61-66. doi:10.1016/j.fusengdes.2015.09.006 |
21 | SALEWSKI M, ASUNTA O, ERIKSSON L G,et al .Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating[J].Plasma Physics and Controlled Fusion,2009,51(3):035006. doi:10.1088/0741-3335/51/3/035006 |
22 | STEJNER M, NIELSEN S K, JACOBSEN A S,et al .Plasma rotation and ion temperature measurements by collective Thomson scattering at ASDEX Upgrade[J].Plasma Physics and Controlled Fusion,2015,57(6):062001. doi:10.1088/0741-3335/57/6/062001 |
23 | MOSEEV D, SALEWSKI M .Bi-Maxwellian,slowing-down,and ring velocity distributions of fast ions in magnetized plasmas[J].Physics of Plasmas,2019,26(2):020901. doi:10.1063/1.5085429 |
24 | WEILAND M, BILATO R,DUX R,et al .RABBIT:real-time simulation of the NBI fast-ion distribution[J].Nuclear Fusion,2018,58(8):082032. doi:10.1088/1741-4326/aabf0f |
25 | ABRAMOVIC I, SALEWSKI M, MOSEEV D .Collective Thomson scattering model for arbitrarily driftingbi-Maxwellian velocity distributions[J].AIP Advances,2019,9(3):035252. doi:10.1063/1.5088949 |
26 | STEJNER M, KORSHOLM S B, NIELSEN S K,et al .The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering[J].Nuclear Fusion,2012,52(2):023011. doi:10.1088/0029-5515/52/2/023011 |
[1] | Jialong ZHANG, Peng SONG, Timing QU. Overview of Magnetic Confinement Controlled Nuclear Fusion Reactors and Superconducting Magnet Technologies [J]. Power Generation Technology, 2024, 45(6): 995-1015. |
[2] | Gaofeng JIAO, Qingbin HAO, Xiaoyan XU, Guoqing LIU, Xueqian LIU, Jialin JIA, Shengnan ZHANG. Influence of Die Angle on Bi-2212 Wire Processing for Nuclear Fusion [J]. Power Generation Technology, 2024, 45(6): 1067-1073. |
[3] | Chunlong ZOU, Shuangsong DU, Feng JIANG, Kun LU, Jing WEI, Guang SHEN, Peter Readman. Structure Design and Optimization of Helium Cooling Tube for Nuclear Fusion Poloidal Coil [J]. Power Generation Technology, 2024, 45(6): 1060-1066. |
[4] | Liye WANG, Wei ZHENG, Bo RAO, Yong YANG, Yulin YANG, Weijie YE, Xiaohan XIE, Peilong ZHANG. Design of Control System for Preliminary Research Device of Magnetic Confinement Deuterium-Deuterium Fusion Neutron Source [J]. Power Generation Technology, 2024, 45(6): 1048-1059. |
[5] | Ting WANG, Yinshun WANG, Lining GUO, Yuyan BIAN, Zhanying LIAN, Leyi LI, Chengpeng MAO. Mechanical Characteristics Analysis of Stacked Magnet of Rare Earth Barium Copper Oxide Closed-Loop Superconducting Gourd-Shaped Loop [J]. Power Generation Technology, 2024, 45(6): 1039-1047. |
[6] | Haorui XU, Suxin WANG, Liujiang LI, Zhiyong YAN, Yunfei TAN. Research on Electromagnetic Simulation Method of Fusion High-Temperature Superconducting Magnet System [J]. Power Generation Technology, 2024, 45(6): 1030-1038. |
[7] | Shiying HE, Liansheng HUANG, Xiaojiao CHEN, Xiuqing ZHANG, Zejing WANG, Ying ZUO, Xinan ZHANG. Design of Real-Time Control System for Nuclear Fusion High-Power DC Test Platform [J]. Power Generation Technology, 2024, 45(6): 1023-1029. |
[8] | Yushen ZHOU, Yuan PAN, Chuan LI, Bo RAO, Yong YANG. Design and Optimization of Deuterium-Deuterium Fusion Neutron Source Large-Size and High Magnetic Field Magnetic Compression Magnet [J]. Power Generation Technology, 2024, 45(6): 1016-1022. |
[9] | SHI Bo, LIU Zhe. The Stage Ⅱ Optimization of GW66/1500 Draught Fancut-out Speed at Xiaocaohu Area Fram China Huadian Corperation [J]. Power Generation Technology, 2017, 38(6): 18-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||