Power Generation Technology ›› 2022, Vol. 43 ›› Issue (1): 19-31.DOI: 10.12096/j.2096-4528.pgt.21083
• Smart Grid • Previous Articles Next Articles
Hongyan YAN1,2, Jin Kwon HWANG2, Yanfeng GAO1
Received:
2021-06-18
Published:
2022-02-28
Online:
2022-03-18
Supported by:
CLC Number:
Hongyan YAN, Jin Kwon HWANG, Yanfeng GAO. Modal Parameter Identification of Low Frequency Oscillation in Power System Based on Ambient Data[J]. Power Generation Technology, 2022, 43(1): 19-31.
DC 趋势项 | 数值 |
---|---|
1/Ks(幅值) | 0.3 |
Ksf0 /(2J) | 0.2 |
Tab. 1 Parameters of the analog DC component
DC 趋势项 | 数值 |
---|---|
1/Ks(幅值) | 0.3 |
Ksf0 /(2J) | 0.2 |
k | fk /Hz | ζk | γk |
---|---|---|---|
1 | 0.3 | 0.07 | 0.4 |
2 | 0.5 | 0.05 | 0.5 |
Tab. 2 Parameters of low-frequency oscillation components
k | fk /Hz | ζk | γk |
---|---|---|---|
1 | 0.3 | 0.07 | 0.4 |
2 | 0.5 | 0.05 | 0.5 |
模态个数 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
最大相关系数 | 0.003 0 | 0.061 2 | 0.124 1 | 0.147 6 |
Tab. 3 Maximum correlation coefficients of K different values
模态个数 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
最大相关系数 | 0.003 0 | 0.061 2 | 0.124 1 | 0.147 6 |
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 SNR=30 dB | 1 | 0.296 8 | 0.072 7 | 0.487 1 | 78.910 0 | 12.358 0 |
2 | 0.500 6 | 0.051 3 | 0.261 3 | 95.591 0 | 13.455 7 | |
MEYW方法 SNR=30 dB | 1 | 0.304 6 | 0.061 3 | 0.430 3 | 73.776 0 | 10.548 1 |
2 | 0.504 8 | 0.058 5 | 0.181 9 | 102.673 3 | 12.909 1 | |
本文算法 SNR=10 dB | 1 | 0.295 4 | 0.070 8 | 0.611 7 | 86.660 2 | 11.351 7 |
2 | 0.503 4 | 0.046 7 | 0.312 5 | 99.217 9 | 12.765 3 | |
MEYW方法 SNR=10 dB | 1 | 0.305 2 | 0.054 0 | 0.489 6 | 82.909 7 | 10.840 1 |
2 | 0.505 5 | 0.037 4 | 0.220 3 | 97.576 4 | 11.890 3 |
Tab. 4 Identification results of simulated data
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 SNR=30 dB | 1 | 0.296 8 | 0.072 7 | 0.487 1 | 78.910 0 | 12.358 0 |
2 | 0.500 6 | 0.051 3 | 0.261 3 | 95.591 0 | 13.455 7 | |
MEYW方法 SNR=30 dB | 1 | 0.304 6 | 0.061 3 | 0.430 3 | 73.776 0 | 10.548 1 |
2 | 0.504 8 | 0.058 5 | 0.181 9 | 102.673 3 | 12.909 1 | |
本文算法 SNR=10 dB | 1 | 0.295 4 | 0.070 8 | 0.611 7 | 86.660 2 | 11.351 7 |
2 | 0.503 4 | 0.046 7 | 0.312 5 | 99.217 9 | 12.765 3 | |
MEYW方法 SNR=10 dB | 1 | 0.305 2 | 0.054 0 | 0.489 6 | 82.909 7 | 10.840 1 |
2 | 0.505 5 | 0.037 4 | 0.220 3 | 97.576 4 | 11.890 3 |
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 | 1 | 0.319 5 | 0.049 40 | 0.885 2 | 89.987 9 | 15.626 3 |
2 | 0.675 3 | 0.135 1 | 0.323 8 | 112.821 0 | 12.260 1 | |
MEYW法 | 1 | 0.319 3 | 0.063 7 | 0.982 4 | 93.850 4 | 14.963 0 |
2 | 0.667 4 | 0.098 7 | 0.266 7 | 113.287 0 | 11.762 7 |
Tab. 5 Identification results of measured data
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 | 1 | 0.319 5 | 0.049 40 | 0.885 2 | 89.987 9 | 15.626 3 |
2 | 0.675 3 | 0.135 1 | 0.323 8 | 112.821 0 | 12.260 1 | |
MEYW法 | 1 | 0.319 3 | 0.063 7 | 0.982 4 | 93.850 4 | 14.963 0 |
2 | 0.667 4 | 0.098 7 | 0.266 7 | 113.287 0 | 11.762 7 |
1 | 李青兰,吴琛,陈磊,等 .抑制频率振荡的电力系统稳定器参数优化[J]. 电力系统自动化,2020,44(7):93-98. doi:10.7500/AEPS20190803005 |
LI Q L, WU C, CHEN L,et al .Parameter optimization of power system stabilizer for suppressing frequency oscillation[J].Automation of Electric Power Systems,2020,44(7):93-98. doi:10.7500/AEPS20190803005 | |
2 | 张虹,王迎丽,勇天泽,等. 基于IEWT和噪能转移SR-MLS反演识别技术的低频振荡信号分析[J].电网技术,2019,38(1):1-10. |
ZHANG H, WANG Y L, YONG T Z,et al .Analysis of low frequency oscillatory signals by IEWT and energy transfer SR-MLS inversion recognition techniques[J].Power System Technology,2019,38(1):1-10. | |
3 | 丁仁杰,沈钟婷 .基于 EMO-EDSNN 的电力系统低频振荡模态辨识[J].电力系统自动化,2020,44(3):122-130. |
DING R J, SHEN Z T .Power system low frequency oscillation mode identification based on exact mode order-exponentially damped sinusoids neural network[J].Automation of Electric Power Systems,2020,44(3):122-130. | |
4 | 肖怀硕,贾梧桐,肖冰莹,等 .基于改进变分模态分解的低频振荡模式辨别[J].电力工程技术,2020,39(2):95-102. |
XIAO H S, JIA W T, XIAO B Y,et al .An identification method for power system low-frequency oscillation based on parameter optimized variational mode decomposition[J].Electric Power Engineering Technology,2020,39(2):95-102. | |
5 | 习工伟,胡涛,朱艺颖,等 .基于新型交直流协调控制抑制电力系统低频振荡的仿真试验[J].电网与清洁能源,2019,35(4):8-15. doi:10.3969/j.issn.1674-3814.2019.04.002 |
XI G W, HU T, ZHU Y Y,et al .Simulation test of low frequency oscillation suppression in power system based on new AC-DC coordinated control[J].Power System and Clean Energy,2019,35(4):8-15. doi:10.3969/j.issn.1674-3814.2019.04.002 | |
6 | HWANG J K, LIU Y L. Discrete Fourier transform-based parametric modal identification from ambient data of the power system frequency[J].IET Generation Transmission Distribution,2016,10(1):213-220. doi:10.1049/iet-gtd.2015.0699 |
7 | HWANG J K, LIU Y .Noise analysis of power system frequency estimated from angle difference of discrete Fourier transform coefficient[J].IEEE Transactions Power Delivery,2014,29(4):1533-1541. doi:10.1109/tpwrd.2014.2315618 |
8 | 于笑,陈武晖 .风力发电并网系统次同步振荡研究[J].发电技术,2018,39(4):304-312. doi:10.12096/j.2096-4528.pgt.2018.047 |
YU X, CHEN W H .Review of subsynchronous oscillation induced by wind power generation integrated system [J].Power Generation Technology,2018,39(4):304-312. doi:10.12096/j.2096-4528.pgt.2018.047 | |
9 | 吴涛,梁浩,谢欢,等 .励磁系统控制关键技术与未来展望[J].发电技术,2021,42(2):160-170. doi:10.12096/j.2096-4528.pgt.21007 |
WU T, LIANG H, XIE H,et al .Key technologies and future prospects of excitation system control[J].Power Generation Technology,2021,42(2):160-170. doi:10.12096/j.2096-4528.pgt.21007 | |
10 | 和萍,申润杰,祁盼,等 .四种FACTS装置对改善风光互补系统稳定性的研究[J].智慧电力,2020,48(7):65-72. doi:10.3969/j.issn.1673-7598.2020.07.010 |
HE P, SHEN R J, QI P,et al .Four kinds of FACTS devices to improve the stability of wind-solar complementary system[J].Smart Power,2020,48(7):65-72. doi:10.3969/j.issn.1673-7598.2020.07.010 | |
11 | 潘学萍 .电力系统低频振荡[M].北京:中国水利水电出版社,2013:123-125. |
PAN X P .Low frequency oscillation of power system[M].Beijing:China Water Power Press,2013:123-125. | |
12 | 孙英云,游亚雄,侯建兰,等 .基于差分正交匹配追踪和 Prony算法的低频振荡模态辨识[J].电力系统自动化,2015,39(10):69-74. |
SUN Y Y, YOU Y X, HOU J L,et al .Identification of lowfrequency oscillation mode based on difference orthogonal matchingpursuit and Prony algorithm[J].Electric Power Automation Equipment,2015,39(10):69-74. | |
13 | 张 程,金 涛 .基于ISPM和SDM-Prony算法的电力系统低频振荡模式识别[J].电网技术,2016,40(4):1209-1216. |
ZHANG C, JIN T .Identification of low frequency oscillations in power systems using an improved smoothness priors method and second-derivative method-Prony[J].Power System Technology,2016,40(4): 1209-1216. | |
14 | YANG J Z, LIU C W, WU W G .A hybrid method for the estimation of power system low-frequency oscillation parameters[J].IEEE Transactions of Power System,2007,22(4):2115-2123. doi:10.1109/tpwrs.2007.907405 |
15 | RUEDA J L, JUÁREZ C A, ERLICH I .Wavelet-based analysis of power system low-frequency electromechanical oscillations[J].IEEE Transactons of. Power System,2011,26(3):1733-1743. doi:10.1109/tpwrs.2010.2104164 |
16 | Zadrozny P A .Extended Yule-Walker identification of VARMA models with singleor mixed-frequency data[J]. Journal of Econometrics,2016,193:438-446. doi:10.1016/j.jeconom.2016.04.017 |
17 | WIES R W, PIERRE J W, TRUNDNOWSKI D J .Use of least-mean squares (LMS) adaptive filtering technique for estimating low-frequency electromechanical modes in power systems[C]//IEEE Power Engineering Society General Meeting,2002:4867-4873. doi:10.1109/acc.2002.1025429 |
18 | ZHOU N, PIERRE J W, TRUNDNOWSKI D J,et al .Robust RLS methods for online estimation of power system electromechanical modes[J].IEEE Transactions of Power System,2007,22(3):1240-1249. doi:10.1109/tpwrs.2007.901104 |
19 | 董飞飞,刘涤尘,涂炼,等 .基于MM-ARMA算法的次同步振荡模态参数辨识[J].高电压技术,2013,39(5):1252-1257. doi:10.3969/j.issn.1003-6520.2013.05.034 |
DONG F F, LIU D C, TU L,et al .Subsynchronous oscillation modal parameter identification based on MM-ARMA algorithm[J].High Voltage Engineering, 2013,39(5):1252-1257. doi:10.3969/j.issn.1003-6520.2013.05.034 | |
20 | 耿海璇,张济民 .基于Yule-Walker AR方法的振动信号除噪研究[J].机电一体化,2016(1):34-37. doi:10.1115/imece2016-65487 |
GENG H X, ZHANG J M .A Study on vibration signal based on Yule-Walker AR method[J].Mechatronics,2016(1):34-37. doi:10.1115/imece2016-65487 | |
21 | ANDERSON M G, ZHOU N, PIERRE J W,et al .Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data[J].IEEE Transactions of Power System,2005,20(2):943-950. doi:10.1109/tpwrs.2005.846125 |
22 | 吴超,陆超,韩英铎,等 .基于类噪声信号和 ARMA-P 方法的振荡模态辨识[J].电力系统自动化,2020,34(6):1-6. |
WU C, LU C, HAN Y D,et al .Identification of mode shape based on ambient signals and ARMA-P method[J].Automation of Electric Power Systems,2020,34(6):1-6. | |
23 | 杨德友,王文嘉,高际惟,等. 随机数据驱动下的机电振荡参数在线提取与阻尼调制(一):基于 ORSSI 的模态参数在线辨识[J].中国电机工程学报,2018, 38(8):2253-2261. |
YANG D Y, WANG W J, GAO J W,et al .On-line electromechanical oscillation analysis and damping modulation for power system using ambient data (part I): modal parameters identification based on ORSSI[J].Proceedings of the CSEE,2018,38(8):2253-2261. | |
24 | 杨德昌, REHTANZ C,李勇,等 .基于改进希尔伯特-黄变换算法的电力系统低频振荡分析[J].中国电机工程学报,2011,31(10):102-108. |
YANG D C, REHTANZ C, LI Y,et al .Researching on low frequency oscillation in power system based on improved HHT algorithm[J].Proceedings of the CSEE,2011,31(10):102-108. | |
25 | 朱永利,王刘旺 .并行 EEMD 算法及其在局部放电信号特征提取中的应用[J].电工技术学报,2018,33(11):2508-2518. |
ZHU Y L, WANG L W .Parallel ensemble empirical mode decomposition and its application in feature extraction of partial discharge signals[J].Transactions of China Electrotechnical Society,2018,33(11):2508-2518. | |
26 | DRAGOMIRETSKIY K, ZOSSO D .Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014,62(3):531-544. doi:10.1109/tsp.2013.2288675 |
27 | 郑小霞,陈广宁,任浩翰,等 .基于改进VMD和深度置信网络的风机易损部件故障预警[J].振动与冲击,2019,38(8):153-160. |
ZHENG X X, CHEN G N, REN H H,et al .Fault detection of vulnerable units of wind turbine based on improved VMD and DBN[J].Journal of Vibration and Shock,2019,38(8):153-160. | |
28 | PIERRE J W, TRUDNOWSKI D J, DONNELLY M K .Initial results in lectromechanical mode identification from ambient data[J].IEEE Transactions of Power System,1997,12(3):1245-1251. doi:10.1109/59.630467 |
29 | INOUE T, TANIGUCHI N, IKEGUCHI Y,et al .Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J].IEEE Transactions of Power System,1997, 12(1):136-143. doi:10.1109/59.574933 |
30 | 李东辉,臧晓明,鞠平,等. 电力系统频率响应的改进模型与参数估计[J].电力工程技术,2019,38(5):85-90. |
LI D H, ZANG X M, JU P,et al .The improved model and parameter estimation for frequency response of power system[J].Electric Power Engineering Technology,2019,38(5):85-90. | |
31 | KAKIMOTO N, SUGUMI M, MAKINO T,et al .Monitoring of interarea oscillation mode by synchronized phasor measurement[J].IEEE Transactions of Power System,2006,21(1): 260-268. doi:10.1109/tpwrs.2005.861960 |
32 | 奥本海默 .信号与系统[M].西安:西安交通大学出版社,1999:156-157. |
OPPENHEIM A V.Signals and systems[M].Xi’an:Xi’an Jiaotong University Press,1999:156-157. | |
33 | 张俊甲,马增强,王梦奇,等 .基于VMD与自相关分析的滚动轴承故障特征提取[J].电子测量与仪器学报,2017,31(9):1372-1378. |
ZHANG J J, MA Z Q, WANG M Q,et al .Fault feature extraction of rolling bearing based on VMD and autocorrelation analysis[J].Journal of Electronic Measurement and Instrumentation,2017,31(9): 1372-1378. | |
34 | 胡楠,李兴源,李宽,等 .基于CCF-TLS-ESPRIT算法的低频振荡在线辨识[J].物理学报,2014,63(6):316-324. doi:10.7498/aps.63.068401 |
HU N, LI X Y, LI K,et al .Online identification of low frequency oscillation based on CCF-TLS-ESPRIT algorithm[J].Acta Physica Sinica,2014,63(6):316-324. doi:10.7498/aps.63.068401 |
[1] | Hongjun FU, Shaoxuan ZHU, Buhua WANG, Yan XIE, Haoqing XIONG, Xiaojun TANG, Xiaoyong DU, Chenghao LI, Xiaomeng LI. Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network [J]. Power Generation Technology, 2024, 45(2): 353-362. |
[2] | Shiying MA,Qing WANG. Risk and Simulation Evaluation of Large-Scale Centralized New Energy Sending System [J]. Power Generation Technology, 2018, 39(2): 112-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||