发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1146-1152.DOI: 10.12096/j.2096-4528.pgt.23175

• 新能源 • 上一篇    

基于图正则化堆叠自编码器的风机轴承故障诊断方法

刘展1, 刘健洵2, 包琰洋2, 李大字2   

  1. 1.北京能高普康测控技术有限公司,北京市 丰台区 100070
    2.北京化工大学信息科学;与技术学院,北京市 朝阳区 100029
  • 收稿日期:2023-12-15 修回日期:2024-03-02 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 李大字
  • 作者简介:刘展(1982),男,博士,高级工程师,主要从事风力发电行业基于工业物联网的核心关键设备服役能力保持与主动安全保障技术研究、产品开发及工业物联网大数据分析服务等相关工作,LiuZhan@bj-pukang.com
    李大字(1970),女,博士,教授,主要从事机器学习与人工智能、故障诊断、先进控制、复杂系统建模与优化等研究,本文通信作者,lidz@mail.buct.edu.cn
  • 基金资助:
    国家自然科学基金项目(62273026);工信部高技术船舶科研项目(MC-202025-S02)

Bearing Faults Diagnosis Method Based on Stacked Auto-Encoder With Graph Regularization for Wind Turbines

Zhan LIU1, Jianxun LIU2, Yanyang BAO2, Dazi LI2   

  1. 1.Beijing Pukang Measurement and Monitoring Tech Co. , Ltd. , Fengtai District, Beijing 100070, China
    2.College of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, China
  • Received:2023-12-15 Revised:2024-03-02 Published:2024-12-31 Online:2024-12-30
  • Contact: Dazi LI
  • Supported by:
    National Natural Science Foundation of China(62273026);High-Tech Ship Research Project of Ministry of Industry and Information Technology(MC-202025-S02)

摘要:

目的 为解决风电机组轴承故障诊断中的故障特征提取效率低、特征表示不够精准以及现有方法难以适应复杂信号需求的问题,提出一种基于图正则化的故障诊断方法,提升了对振动信号的分析能力,从而实现对不同故障类型的准确分类和可靠诊断。 方法 采用基于图正则化自编码器的技术,结合图嵌入思想,指导堆叠监督自编码器进行特征提取。在故障特征提取阶段,首先对诊断信号进行图表示,然后在堆叠自编码器中添加图正则化项,以确保嵌入后的低维特征保持流形结构,从而提取数据深层的复杂几何特征。 结果 所提取的特征能够实现对不同故障类型的准确分类,展现出在故障特征捕捉方面的显著优势。实验结果表明,该方法在实际风场数据的应用中,具有更高的诊断精度和可靠性,有效提高了故障特征的提取效率和分类准确性。 结论 所提方法在风电轴承故障诊断领域表现出显著的有效性和优越性,为实际应用提供了可靠的技术支持。

关键词: 风电机组, 轴承, 故障诊断, 图正则化, 自编码器, 图嵌入, 特征提取, 振动信号

Abstract:

Objectives In order to solve the problems of low efficiency of fault feature extraction, inaccurate feature representation, and difficulty in adapting existing methods to complex signal requirements in wind turbine bearing fault diagnosis, a fault diagnosis method based on graph regularization was proposed. The method helps to improve the analysis ability of vibration signals, thereby achieving accurate classification and reliable diagnosis of different fault types. Methods The technology based on graph regularization auto-encoder was adopted, combined with the idea of graph embedding, to guide the stack-supervised auto-encoder to carry out feature extraction. In the fault feature extraction stage, the diagnostic signal was first graphically represented, and then graph regularization terms were added to the stacked auto-encoder to ensure that the embedded low-dimensional features maintain the manifold structure, thereby extracting complex geometric features deep in the data. Results The extracted features can accurately classify different fault types, showing significant advantages in fault feature capture. Experimental results show that this method has higher diagnosis accuracy and reliability in the application of actual wind farm data, and effectively improves the extraction efficiency and classification accuracy of fault features. Conclusions The proposed method has shown significant effectiveness and advantages in the field of wind power bearing fault diagnosis, and provides reliable technical support for practical applications.

Key words: wind turbine, bearing, fault diagnosis, graph regularization, auto-encoder, graph embedding, feature extraction, vibration signal

中图分类号: