发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1060-1066.DOI: 10.12096/j.2096-4528.pgt.24123

• 可控核聚变及其发电技术 • 上一篇    

核聚变堆极向场线圈氦冷却管结构设计与优化

邹春龙1,2, 杜双松1,2, 江峰1,2, 陆坤1, 卫靖1, 沈光1, Readman Peter3   

  1. 1.中国科学院等离子体物理研究所,安徽省 合肥市 230031
    2.合肥中科离子医学技术;装备有限公司,安徽省 合肥市 230061
    3.欧洲聚变能研究中心,西班牙 巴塞罗那 08001
  • 收稿日期:2024-07-01 修回日期:2024-10-18 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 杜双松
  • 作者简介:邹春龙(1989),男,博士,副研究员,主要研究方向为聚变超导电物理装置,clzou@ipp.ac.cn
    杜双松(1980),男,博士,高级工程师,主要研究方向为聚变超导磁体技术,本文通信作者,ssdu@ipp.ac.cn
  • 基金资助:
    中欧国际合作项目(Y35QT21611)

Structure Design and Optimization of Helium Cooling Tube for Nuclear Fusion Poloidal Coil

Chunlong ZOU1,2, Shuangsong DU1,2, Feng JIANG1,2, Kun LU1, Jing WEI1, Guang SHEN1, Peter Readman3   

  1. 1.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China
    2.Hefei CAS Ion Medical and Technical Device Co. , LTD. , Hefei 230061, Anhui Province, China
    3.Fusion for Energy, Barcelona 08001, Spain
  • Received:2024-07-01 Revised:2024-10-18 Published:2024-12-31 Online:2024-12-30
  • Contact: Shuangsong DU
  • Supported by:
    China-EU International Cooperation Projects(Y35QT21611)

摘要:

目的 氦冷却管是聚变超导磁体系统的核心部件,承担着超导磁体冷却通道与低温系统的连接,直接关系着超导磁体系统的运行稳定。由于氦冷却管需在装置现场进行焊接,因此氦管结构设计需从功能实现和现场工艺可操作性等多角度综合考虑,提出合理解决方案。 方法 通过综合分析聚变堆极向场结构,开展了低温氦冷却管结构优化及压损评估研究,并从结构力学角度对氦孔尺寸和焊缝倒角优化设计方面进行了全面的对比分析,提出聚变堆磁体氦冷却管设计准则一般要求。结合氦冷却管结构力学分析、压损分析,并综合考虑现场可操作性,提出氦冷却管设计方案,以满足聚变堆磁体氦冷却管要求。 结果 短跑道氦冷却管虽然会导致局部压损增大,局部压损相当于2.7 m长的导体,但与线圈总长相比,其所带来的压损基本可忽略。 结论 采用短跑道型氦管设计方案不仅可以满足功能需求,还可极大提高现场工艺可操作性,可满足聚变堆超导磁体氦冷却管要求。

关键词: 热核聚变, 聚变装置, 极向场线圈, 氦冷却管, 结构设计, 超导磁体, 强磁场, 等离子体

Abstract:

Objectives The helium cooling tube is the core component of the fusion superconducting magnet system. It connects the superconducting magnet cooling channel and the cryogenic system, and is directly related to the operation stability of the superconducting magnet system. Since helium cooling pipes need to be welded on site, the structural design of helium pipes needs to be comprehensively considered from multiple aspects such as functional realization and on-site process operability, and reasonable solutions need to be proposed. Methods Through comprehensive analysis of the polar field structure of the fusion reactor, the structural optimization and pressure loss assessment of the cryogenic helium cooling tube were carried out. A comprehensive comparative analysis of the helium hole size and the optimal design of weld chamfer was carried out from the perspective of structural mechanics. The general requirements for the design criteria of the fusion reactor magnet helium cooling tube were proposed. Based on the structural mechanical analysis and pressure loss analysis of helium cooling tubes, and the comprehensive consideration of field operability, a helium cooling tube design scheme was proposed to meet the requirements of helium cooling tubes for fusion reactor magnets. Results Although short running helium cooling pipes will cause an increase in local pressure loss, which is equivalent to a conductor of 2.7 meters long, the pressure loss caused by them is basically negligible compared with the total length of the coil. Conclusions The adoption of the short track helium tube design scheme can not only meet the functional requirements, but also greatly improve the operability of the field process and meet the requirements of helium cooling tubes for superconducting magnets in fusion reactors.

Key words: thermonuclear fusion, fusion device, poloidal field coil, helium cooling tube, structural design, superconducting magnet, strong magnetic field, plasma

中图分类号: