发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1048-1059.DOI: 10.12096/j.2096-4528.pgt.24153

• 可控核聚变及其发电技术 • 上一篇    

磁约束氘氘聚变中子源预研装置控制系统设计

王俪晔1,2, 郑玮1,2, 饶波1,2, 杨勇1,2, 杨玉林1,2, 叶伟杰1,2, 谢筱涵1,2, 张沛龙1,2   

  1. 1.强电磁技术全国重点实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074
    2.磁约束聚变与等离子体国际合作联合实验室(华中科技大学电气与电子工程学院),湖北省 ;武汉市 430074
  • 收稿日期:2024-07-22 修回日期:2024-11-05 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 郑玮
  • 作者简介:王俪晔(2002),女,硕士研究生,主要研究方向为聚变实验控制系统的设计、实现与部署,liyewang@hust.edu.cn
    郑玮(1987),男,博士,副研究员,主要研究方向为大型物理实验装置的控制系统,以及基于人工智能的破裂和其他等离子体不稳定性的预测和控制,本文通信作者,zhengwei@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(12375219)

Design of Control System for Preliminary Research Device of Magnetic Confinement Deuterium-Deuterium Fusion Neutron Source

Liye WANG1,2, Wei ZHENG1,2, Bo RAO1,2, Yong YANG1,2, Yulin YANG1,2, Weijie YE1,2, Xiaohan XIE1,2, Peilong ZHANG1,2   

  1. 1.State Key Laboratory of Advanced Electromagnetic Engineering and Technology (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
    2.International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
  • Received:2024-07-22 Revised:2024-11-05 Published:2024-12-31 Online:2024-12-30
  • Contact: Wei ZHENG
  • Supported by:
    National Natural Science Foundation of China(12375219)

摘要:

目的 磁约束氘氘聚变中子源预研装置是基于场反位形级联磁压缩的新型中子源预研方案,旨在基于第一阶段建设经验,完善系统设计,显著提升等离子体参数,并进一步开展磁压缩聚变等研究,为在第三阶段实现具有大体积高通量聚变中子源打下基础。 方法 预研装置控制系统对控制框架进行优化重构,提供安全联锁、脉冲控制与综合数据服务,通过集成控制将各服务协调集成到自动化执行的放电流程中,并新增多项资源拓展应用和DevOps工具。 结果 通过重构设计,控制系统在安全、稳定与效率等方面的综合性能得到显著提升。安全联锁系统确保了实验过程中的人员和设备安全,脉冲控制系统实现了高精度的时序控制,综合数据服务提供了从数据采集到分析的全流程支持,资源拓展应用和DevOps工具进一步提高了系统的灵活性和运维效率。 结论 该设计通过优化控制框架和引入先进的运维工具,能够更好地满足装置结构复杂化和放电流程精密化的需求,为后续长周期合作建设的磁约束氘氘聚变中子源预研装置提供了高效的控制系统建设方案。

关键词: 核聚变, 聚变中子源, 磁约束, 等离子体, 场反位形, 控制系统, 氘氘聚变

Abstract:

Objectives The preliminary research device of magnetic confinement deuterium-deuterium fusion neutron source is a novel neutron source preliminary research device based on field-reversed configuration (FRC) cascade magnetic compression. It aims to leverage the experiences from the first-phase construction to enhance system design, significantly improve plasma parameters, and further expand research on magnetic compression fusion, laying the foundation for achieving a large-volume high-flux fusion neutron source in the third phase. Methods The preliminary research device control system optimized and reconstructed the control framework, provided safety interlocking, pulse control and comprehensive data services, coordinated and integrated each service into the automated discharge process through integrated control, and added a number of resources to expand applications and DevOps tool. Results Through the reconfiguration design, the comprehensive performance of the control system in terms of safety, stability and efficiency had been significantly improved. The safety interlock system ensured the safety of personnel and equipment during the experiment process, the pulse control system achieved high-precision timing control, the comprehensive data service provided full process support from data collection to analysis, and resource expansion applications and DevOps tools further improved the system flexibility and operation and maintenance efficiency. Conclusions By optimizing the control framework and introducing advanced operation and maintenance tools, the design can better meet the needs of complex device structure and precise discharge flow, and provide an efficient control system construction plan for the subsequent long-term cooperation construction of the magnetically confined deuterium fusion neutron source preliminary research device.

Key words: nuclear fusion, fusion neurton source, magnetic confinement, the plasma, field-reversed configuration (FRC), control system, deuterium-deuterium fusion

中图分类号: