发电技术 ›› 2022, Vol. 43 ›› Issue (5): 792-800.DOI: 10.12096/j.2096-4528.pgt.22098
闫帅帅, 陆洋, 侯文会, 刘凯
收稿日期:
2022-05-30
出版日期:
2022-10-31
发布日期:
2022-11-04
作者简介:
基金资助:
Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU
Received:
2022-05-30
Published:
2022-10-31
Online:
2022-11-04
Supported by:
摘要:
为实现“碳达峰、碳中和”目标,构建安全稳定、绿色低碳的现代化能源体系,锂离子电池作为一种典型的电化学储能器件备受关注。如何在新增装机规模不断扩大的情况下,保证电站安全平稳运行成为了首要问题。为此,从电芯材料角度出发,针对目前商业锂电池隔膜存在的问题,综述了近年来智能隔膜方面的工作,包括聚烯烃隔膜材料改性、新型智能化隔膜结构设计和耐高温聚合物材料开发,强调了开发高安全性隔膜材料的重要性。最后,对液态和固态电池隔膜的研究方向进行了展望,以期为进一步设计高安全性的储能材料提供参考。
中图分类号:
闫帅帅, 陆洋, 侯文会, 刘凯. 面向锂电储能系统的本质安全电池智能隔膜材料[J]. 发电技术, 2022, 43(5): 792-800.
Shuaishuai YAN, Yang LU, Wenhui HOU, Kai LIU. Smart Separator Materials of Intrinsic Safe Lithium Battery for Large-scale Electric Energy Storge[J]. Power Generation Technology, 2022, 43(5): 792-800.
1 | 周保中,刘敦楠,张继广,等 .“风光火一体化”多能互补项目优化配置研究[J].发电技术,2022,43(1):11-18. doi:10.12096/j.2096-4528.pgt.21101 |
ZHOU B Z, LIU D N, ZHANG J G,et al .Research on optimal allocation of multi-energy complementary project of wind-solar-thermal integration[J].Power Generation Technology,2022,43(1):11-18. doi:10.12096/j.2096-4528.pgt.21101 | |
2 | 陈晓光,杨秀媛,卜思齐,等 .考虑经济功能性的风电场储能系统容量配置[J].发电技术,2022,43(2):342-352. doi:10.12096/j.2096-4528.pgt.21073 |
CHEN X G, YANG X Y, BU S Q,et al .Capacity allocation of wind farm energy storage system considering economic function[J].Power Generation Technology,2022,43(2):342-352. doi:10.12096/j.2096-4528.pgt.21073 | |
3 | 吕超,张爽,朱世怀,等 .储能锂离子电池包强制风冷系统热仿真分析与优化[J].电力系统保护与控制,2021,49(12):48-55. doi:10.19783/j.cnki.pspc.201653 |
LÜ C, ZHANG S, ZHU S H .Thermal simulation analysis and optimization of forced air cooling system for energy storage lithium-ion battery pack[J].Power System Protection and Control,2021,49(12):48-55. doi:10.19783/j.cnki.pspc.201653 | |
4 | 吴正骅,申屠刚,戴睿昕 .考虑需求响应特征的多站融合协同优化调度[J].电网与清洁能源,2022,38(7):63-70. doi:10.3969/j.issn.1674-3814.2022.07.009 |
WU Z H, SHEN T G, DAI R X .Multi station fusion cooperative optimal scheduling considering demand side response[J].Power System and Clean Energy,2022,38(7):63-70. doi:10.3969/j.issn.1674-3814.2022.07.009 | |
5 | 臧紫坤,杨晓辉,李昭辉,等 .考虑储热改造与最优弃能的风光火储低碳经济调度[J].电力系统保护与控制,2022,50(12):33-43. |
ZANG Z K, YANG X H, LI Z H,et al .Low-carbon economic scheduling of solar thermal storage considering heat storage transformation and optimal energy abandonment[J].Power System Protection and Control,2022,50(12):33-43. | |
6 | 裴哲义,范高锋,秦晓辉 .我国电力系统对大规模储能的需求分析[J].储能科学与技术,2020,9(5):1563-1565. |
PEI Z Y, FAN G F, QIN X H .Demand analysis of large scale energy storage in China’s power system[J].Energy Storage Science and Technology,2020,9(5):1563-1565. | |
7 | 张青苗,陈来军,马恒瑞,等 .基于主从博弈的共享储能分时电价策略[J].智慧电力,2022,50(7):82-88. doi:10.3969/j.issn.1673-7598.2022.07.013 |
ZHANG Q M, CHEN L J, MA H R,et al .Time-of-use price strategy for shared energy storage based on stackelberg game[J].Smart Power,2022,50(7):82-88. doi:10.3969/j.issn.1673-7598.2022.07.013 | |
8 | FENG X, OUYANG M, LIU X,et al .Thermal runaway mechanism of lithium ion battery for electric vehicles:a review[J].Energy Storage Materials,2018,10:246-267. doi:10.1016/j.ensm.2017.05.013 |
9 | 陈天雨,高尚,冯旭宁,等 .锂离子电池热失控蔓延研究进展[J].储能科学与技术,2018,7(6):1031-1039. doi:10.12028/j.issn.2095-4239.2018.0167 |
CHEN T Y, GAO S, FENG X N,et al .Recent progress on thermal runaway propagation of lithium-ion battery[J].Energy Storage Science and Technology,2018,7(6):1031-1039. doi:10.12028/j.issn.2095-4239.2018.0167 | |
10 | 黄志亮,王怀兴,阳同光,等 .储能锂离子电池包单体内部温度压力模拟[J].电力系统保护与控制,2022,50(15):138-146. |
HUANG Z L, WANG H X, YANG T G,et al .Simulation of internal temperature and pressure for cells in an energy storage lithium-ion battery[J].Power System Protection and Control,2022,50(15):138-146. | |
11 | LIU K, LIU Y, LIN D,et al .Materials for lithium ion battery safety[J].Science Advances,2018,4:9820. doi:10.1126/sciadv.aas9820 |
12 | YAN S, CHEN X, ZHOU P,et al .Regulating the growth of lithium dendrite by coating an ultra-thin layer of gold on separator for improving the fast-charging ability of graphite anode[J].Journal of Energy Chemistry,2022,67:467-473. doi:10.1016/j.jechem.2021.10.036 |
13 | YUAN M, LIU K .Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J].Journal of Energy Chemistry,2020,43:58-70. doi:10.1016/j.jechem.2019.08.008 |
14 | NA W, KOH K H, LEE A S,et al .Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries[J].Journal of Membrane Science,2019,573:621-627. doi:10.1016/j.memsci.2018.12.039 |
15 | ZHU X, JIANG X, AI X,et al .TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries[J].Journal of Membrane Science,2016,504:97-103. doi:10.1016/j.memsci.2015.12.059 |
16 | SHI C, DAI J, SHEN X,et al .A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries[J].Journal of Membrane Science,2016,517:91-99. doi:10.1016/j.memsci.2016.06.035 |
17 | LI D, SHI D, XIA Y,et al .Superior thermally stable and nonflammable porous polybenzimidazole membrane with high wettability for high-power lithium-ion batteries[J].ACS Applied Materials & Interfaces,2017,9(10):8742-8750. doi:10.1021/acsami.6b16316 |
18 | LI Z, CAO T, ZHANG Y,et al .Novel lithium ion battery separator based on hydroxymethyl functionalized poly (ether ether ketone)[J].Journal of Membrane Science,2017,540:422-429. doi:10.1016/j.memsci.2017.06.045 |
19 | SUN G, KONG L, LIU B,et al .Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries[J].Journal of Membrane Science,2019,582:132-139. doi:10.1016/j.memsci.2019.04.005 |
20 | LIANG J, CHEN Q, LIAO X,et al .A nano-shield design for separators to resist dendrites of lithium metal battery[J].Angewandte Chemie International Edition,2020,132(16):6623-6628. doi:10.1002/ange.201915440 |
21 | DAI J, SHI C, LI C,et al .A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes[J].Energy & Environmental Science,2016,9(10):3252-3261. doi:10.1039/c6ee01219a |
22 | ZHAO C, CHEN P, ZHANG R,et al .An ion redistributor for dendrite-free lithium metal anodes[J].Science Advances,2018,4:3446. doi:10.1126/sciadv.aat3446 |
23 | LIU Y, LIU Q, XIN L,et al .Making Li-metal electrodes rechargeable by controlling the dendrite growth direction[J].Nature Energy,2017,2(7):17083. doi:10.1038/nenergy.2017.83 |
24 | YAN C, YUAN H, PARK H,et al .Perspective on the critical role of interface for advanced batteries[J].Journal of Energy Chemistry,2020,47:217-220. doi:10.1016/j.jechem.2019.09.034 |
25 | LI X, YUAN L, LIU D,et al .Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode[J].Advanced Functional Materials,2021,31(18):2100537. doi:10.1002/adfm.202100537 |
26 | SHIN W K, KANNAN A G, KIM D W .Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries[J].ACS Applied Materials & Interfaces,2015,7(42):23700-23707. doi:10.1021/acsami.5b07730 |
27 | SHENG L, WANG Q, LIU X,et al .Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator[J].Nature Communications,2022,13:172. doi:10.1038/s41467-021-27841-0 |
28 | ZHAO Q, UTOMO N, KOCEN A,et al .Upgrading carbonate electrolytes for ultra-stable practical lithium metal batteries[J].Angewandte Chemie International Edition,2021,61(9):16214. doi:10.1002/ange.202116214 |
29 | ZHANG X, CHEN X, HOU L,et al .Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J].ACS Energy Letters,2019,4(2):411-416. doi:10.1021/acsenergylett.8b02376 |
30 | LIU S, JI X, PIAO N,et al .Inorganic-rich solid electrolyte interphase for advanced lithium metal batteries in carbonate electrolytes[J].Angewandte Chemie International Edition,2021,60(7):3661-3671. doi:10.1002/anie.202012005 |
31 | LIU Y, LIN D, LI Y,et al .Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode[J].Nature Communications,2018,9:3656. doi:10.1038/s41467-018-06077-5 |
32 | SHI Q, ZHONG Y, WU M,et al .High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5676-5680. doi:10.1073/pnas.1803634115 |
33 | LIU Y, QIN X, ZHOU D,et al .A biscuit-like separator enabling high performance lithium batteries by continuous and protected releasing of NO3 - in carbonate electrolyte[J].Energy Storage Materials,2020,24:229-236. doi:10.1016/j.ensm.2019.08.016 |
34 | DONG H, WANG P, YAN S,et al .A thermoresponsive composite separator loaded with paraffin@SiO2 microparticles for safe and stable lithium batteries[J].Journal of Energy Chemistry,2021,62:423-430. doi:10.1016/j.jechem.2021.03.046 |
35 | LI D, SHI D, YUAN Z,et al .A low cost shutdown sandwich-like composite membrane with superior thermo-stability for lithium-ion battery[J].Journal of Membrane Science,2017,542:1-7. doi:10.1016/j.memsci.2017.07.051 |
36 | WANG L, DENG N, JU J,et al .A novel core-shell structured poly-m-phenyleneisophthalamide @ polyviny-lidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance[J].Electrochimica Acta,2019,300:263-273. doi:10.1016/j.electacta.2019.01.115 |
37 | JIANG X, XIAO L, AI X,et al .A novel bifunctional thermo-sensitive poly(lactic acid)@poly(butylene succinate) core-shell fibrous separator prepared by a coaxial electrospinning route for safe lithium-ion batteries[J].Journal of Materials Chemistry A,2017,5(44):23238-23242. doi:10.1039/c7ta08063h |
38 | ZHANG X, SUN Q, ZHEN C,et al .Recent progress in flame-retardant separators for safe lithium-ion batteries[J].Energy Storage Materials,2021,37:628-647. doi:10.1016/j.ensm.2021.02.042 |
39 | TAN L, CHEN S, CHEN Y,et al .Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality[J].Angewandte Chemie International Edition,2022,61:1-10. doi:10.1002/ange.202203693 |
40 | YIM T, PARK M S, WOO S G,et al .Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness[J].Nano Letters,2015,15(8):5059-5067. doi:10.1021/acs.nanolett.5b01167 |
41 | CHOU L Y, YE Y, LEE H K,et al .Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J].Nano Letters,2021,21(5):2074-2080. doi:10.1021/acs.nanolett.0c04568 |
42 | WANG L, WANG Z, SUN Y,et al .Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator[J].Journal of Membrane Science,2019,572:512-519. doi:10.1016/j.memsci.2018.11.041 |
43 | LIU K, LIU W, QIU Y,et al .Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries[J].Science Advances,2017,3(1):e1601978. doi:10.1126/sciadv.1601978 |
44 | LIU Z, PENG Y, MENG T,et al .Thermal-triggered fire-extinguishing separators by phase change materials for high-safety lithium-ion batteries[J].Energy Storage Materials,2022,47:445-452. doi:10.1016/j.ensm.2022.02.020 |
45 | WU H, ZHUO D, KONG D,et al .Improving battery safety by early detection of internal shorting with a bifunctional separator[J].Nature Communications,2014,5:5193. doi:10.1038/ncomms6193 |
46 | LIU K, ZHUO D, LEE H W,et al .Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator[J].Advanced Materials,2017,29:1603987. doi:10.1002/adma.201603987 |
47 | GONZALEZ M S, YAN Q, HOLOUBEK J,et al .Draining over blocking: nano-composite Janus separators for mitigating internal shorting of lithium batteries[J].Advanced Materials,2020,32(12):1906836. doi:10.1002/adma.201906836 |
48 | WANG F, KE X, SHEN K,et al .A critical review on materials and fabrications of thermally stable separators for lithium-ion batteries[J].Advanced Materials Technologies,2021,7(5):2100772. doi:10.1002/admt.202100772 |
49 | LIANG N, FANG J, GUO X .A simple approach for preparation of porous polybenzimidazole membranes as a promising separator for lithium ion batteries[J].Journal of Materials Chemistry A,2017,5(29):15087-15095. doi:10.1039/c7ta03554c |
50 | LIU J, MO Y, WANG S,et al .Ultrastrong and heat-resistant poly(ether ether ketone) separator for dendrite-proof and heat-resistant lithium-ion batteries[J].ACS Applied Energy Materials,2019,2(5):3886-3895. doi:10.1021/acsaem.9b00568 |
51 | PATEL A, WILCOX K, LI Z,et al .High modulus,thermally stable,and self-extinguishing aramid nanofiber separators[J].ACS Applied Materials & Interfaces,2020,12(23):25756-25766. doi:10.1021/acsami.0c03671 |
[1] | 代华松, 浦绍旭, 柴国旭, 金李, 陈为平, 解明亮. 350 MW超临界流化床机组深度调峰研究与应用[J]. 发电技术, 2024, 45(3): 401-411. |
[2] | 陈志华, 尤梦凯, 蔡伟, 胡经伟, 胡兴, 张爱芳, 张科杰, 王伟. 考虑全寿命周期的储能电站综合评价模型[J]. 发电技术, 2023, 44(6): 883-888. |
[3] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
[4] | 王泽旭, 贺可寒, 孙晨, 李凯璇, 巨星. 采用相变热开关的软包电池热管理研究[J]. 发电技术, 2022, 43(5): 810-822. |
[5] | 王宁, 陈志强, 刘明义, 张鹏, 曹曦, 陆泽宇, 雷浩东, 曹传钊, 严晓, 周国鹏. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791. |
[6] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[7] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
[8] | 王泽旭, 李冰辰, 许瑶, 刘倩, 李凯璇, 巨星. 基于过冷相变材料热开关的锂离子电池热管理系统[J]. 发电技术, 2022, 43(2): 328-340. |
[9] | 李沂洹, 李慷, 余渐. 锂离子电池荷电状态与健康状态估计方法[J]. 发电技术, 2021, 42(5): 537-546. |
[10] | 靳文涛, 李相俊, 惠东, 李静立, 祁万年, 吕成渊. 规模化储能电站电池一致性的统计特性研究[J]. 发电技术, 2021, 42(3): 298-305. |
[11] | 刘倩, 石千磊, 李凯璇, 徐超, 廖志荣, 巨星. 锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J]. 发电技术, 2021, 42(2): 218-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||