发电技术 ›› 2021, Vol. 42 ›› Issue (2): 218-229.DOI: 10.12096/j.2096-4528.pgt.20111
刘倩(), 石千磊(
), 李凯璇(
), 徐超(
), 廖志荣(
), 巨星(
)
收稿日期:
2020-10-20
出版日期:
2021-04-30
发布日期:
2021-04-29
通讯作者:
巨星
作者简介:
刘倩(1997), 女, 硕士研究生, 主要研究方向为电动汽车电池热管理, liuqian_0802@163.com基金资助:
Qian LIU(), Qianlei SHI(
), Kaixuan LI(
), Chao XU(
), Zhirong LIAO(
), Xing JU(
)
Received:
2020-10-20
Published:
2021-04-30
Online:
2021-04-29
Contact:
Xing JU
Supported by:
摘要:
针对动力电池热管理的问题,对18650圆柱型锂离子电池阵列的新型液冷结构及其冷却效果展开研究。提出棋盘拓扑分流结构的浸没式冷却方法,结合锂离子电池自身形状和阵列排布的特点,基于电池阵列本体形成一种简单合理的浸没式冷却拓扑结构。在此新型冷却结构的设计下,进一步建立电池阵列的单体模型和模组模型,通过数值模拟方法对单体模型和模组模型在各个时刻的温度分布情况进行分析,验证了以单体模型代替模组模型的可行性。在确保单体模型计算准确性的基础上,对冷却液流道的出入口布置进行数值模拟,结果表明:流道出入口同侧布置与异侧布置具有几乎相同的出入口压降,但流道出入口同侧布置的冷却效果优于异侧布置,且随着电池生热量的增大和生热时间的增加,同侧出入口布置的优势更加明显。
中图分类号:
刘倩, 石千磊, 李凯璇, 徐超, 廖志荣, 巨星. 锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究[J]. 发电技术, 2021, 42(2): 218-229.
Qian LIU, Qianlei SHI, Kaixuan LI, Chao XU, Zhirong LIAO, Xing JU. Research on Immersion Cooling Thermal Management of Lithium Ion Battery Combined With Checkerboard Topology Diversion Structure[J]. Power Generation Technology, 2021, 42(2): 218-229.
结构名称 | 尺寸 |
盖板和歧管层厚度/mm | 7 |
冷却液横向流入通道截面尺寸/(mm×mm) | 5×5 |
阳极绝缘/棋盘孔口层厚度/mm | 1 |
电池直径/mm | 18 |
电池高度/mm | 65 |
浸没冷却区高度/mm | 65 |
阴极绝缘/棋盘孔口层厚度/mm | 1 |
出口歧管和底板层厚度/mm | 7 |
表1 电池冷却结构各层的设计尺寸
Tab. 1 Design dimensions for each layer of battery cooling structure
结构名称 | 尺寸 |
盖板和歧管层厚度/mm | 7 |
冷却液横向流入通道截面尺寸/(mm×mm) | 5×5 |
阳极绝缘/棋盘孔口层厚度/mm | 1 |
电池直径/mm | 18 |
电池高度/mm | 65 |
浸没冷却区高度/mm | 65 |
阴极绝缘/棋盘孔口层厚度/mm | 1 |
出口歧管和底板层厚度/mm | 7 |
项目 | 生热量/W | |||
4 | 6 | 8 | 10 | |
电池整体体积生热率/ (W/cm3) | 0.214 8 | 0.362 7 | 0.483 7 | 0.604 6 |
发热中心体积生热率/ (W/cm3) | 3.367 9 | 5.051 9 | 6.737 2 | 8.421 2 |
放电倍率/C | 4.784 | 6.055 | 7.130 | 8.080 |
表2 体积生热率与放电倍率关系
Tab. 2 Relationship between volume heat generation rate and discharge rate
项目 | 生热量/W | |||
4 | 6 | 8 | 10 | |
电池整体体积生热率/ (W/cm3) | 0.214 8 | 0.362 7 | 0.483 7 | 0.604 6 |
发热中心体积生热率/ (W/cm3) | 3.367 9 | 5.051 9 | 6.737 2 | 8.421 2 |
放电倍率/C | 4.784 | 6.055 | 7.130 | 8.080 |
材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 导热系数/[W/(m·K)] |
去离子水 | 998.2 | 4 182 | 0.60 |
铝 | 2 179.0 | 871 | 155.00 |
电池发热中心 | 7 930.0 | 500 | 16.00 |
绝缘层 | 1 000.0 | 1 200 | 0.19 |
电池主体部分 | 2 510.0 | 1 028 | 36.96(平行)/1.63(垂直) |
表3 各部分材料的物性参数
Tab. 3 Physical parameters of each part material
材料 | 密度/(kg/m3) | 比热容/[J/(kg·K)] | 导热系数/[W/(m·K)] |
去离子水 | 998.2 | 4 182 | 0.60 |
铝 | 2 179.0 | 871 | 155.00 |
电池发热中心 | 7 930.0 | 500 | 16.00 |
绝缘层 | 1 000.0 | 1 200 | 0.19 |
电池主体部分 | 2 510.0 | 1 028 | 36.96(平行)/1.63(垂直) |
时间/s | 时间步长/s | ||
0.1 | 0.2 | ||
100 | 33.176 | 33.183 | |
200 | 35.810 | 35.811 | |
300 | 37.299 | 37.300 | |
400 | 38.145 | 38.146 | |
500 | 38.621 | 38.624 | |
600 | 38.884 | 38.895 | |
700 | 39.021 | 39.047 | |
800 | 39.129 | 39.132 |
表4 不同时间步长下各时刻对应的最高温度
Tab. 4 Maximum temperature at different time steps ℃
时间/s | 时间步长/s | ||
0.1 | 0.2 | ||
100 | 33.176 | 33.183 | |
200 | 35.810 | 35.811 | |
300 | 37.299 | 37.300 | |
400 | 38.145 | 38.146 | |
500 | 38.621 | 38.624 | |
600 | 38.884 | 38.895 | |
700 | 39.021 | 39.047 | |
800 | 39.129 | 39.132 |
参数 | 网格1 | 网格2 | 网格3 | 偏差/% | |
网格2→1 | 网格2→3 | ||||
网格数目 | 18 888 | 45 652 | 78 684 | — | — |
平均温度/℃ | 38.626 | 39.235 | 39.857 | 1.55 | 1.59 |
最高温度/℃ | 32.255 | 32.840 | 33.451 | 1.78 | 1.86 |
表5 计算模型的网格无关性校验
Tab. 5 Verification of mesh independence of computational model
参数 | 网格1 | 网格2 | 网格3 | 偏差/% | |
网格2→1 | 网格2→3 | ||||
网格数目 | 18 888 | 45 652 | 78 684 | — | — |
平均温度/℃ | 38.626 | 39.235 | 39.857 | 1.55 | 1.59 |
最高温度/℃ | 32.255 | 32.840 | 33.451 | 1.78 | 1.86 |
1 | 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35 (10): 2767- 2775. |
YAN J D . Development status and prospect analysis of lithium ion battery[J]. Acta Aerophenica Sinica, 2014, 35 (10): 2767- 2775. | |
2 |
宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35 (4): 1- 7.
DOI URL |
SONG Y H , YANG Y X , HU Z C . Current situation and development trend of electric vehicle batteries[J]. Power Grid Technology, 2011, 35 (4): 1- 7.
DOI URL |
|
3 | 罗晔. 韩国电化学储能系统研发进展[J]. 分布式能源, 2020, 5 (3): 29- 33. |
LUO Y . Research and development of electrochemical energy storage system in South Korea[J]. Distributed Energy, 2020, 5 (3): 29- 33. | |
4 | 金远, 韩甜, 韩鑫, 等. 锂离子电池热管理综述[J]. 储能科学与技术, 2019, 8 (S1): 23- 30. |
JIN Y , HAN T , HAN X , et al. Overview of thermal management of lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8 (S1): 23- 30. | |
5 |
RAO Z , WANG S . A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15, 4554- 4571.
DOI URL |
6 | 梅简, 张杰, 刘双宇, 等. 电池储能技术发展现状[J]. 浙江电力, 2020, 39 (3): 75- 81. |
MEI J , ZHANG J , LIU S Y , et al. Development status of battery energy storage technology[J]. Zhejiang Electric Power, 2020, 39 (3): 75- 81. | |
7 | LIU J , LI H , LI W , et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2011, 164, 114421. |
8 | 廖智伟. 液冷式18650动力锂电池组温度场分析及优化[M]. 重庆: 重庆交通大学, 2018: 1- 3. |
LIAO Z W . Temperature field analysis and optimization of liquid cooled 18650 lithium battery[M]. Chongqing: Chongqing Jiaotong University, 2018: 1- 3. | |
9 |
GRECO A , JIANG X , CAO D . An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite[J]. Journal of Power Sources, 2015, 278, 50- 68.
DOI |
10 |
ZHAO R , ZHANG S , LIU J , et al. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system[J]. Journal of Power Sources, 2015, 299, 557- 577.
DOI |
11 |
WU W , WANG S , WU W , et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182, 262- 281.
DOI |
12 |
BAMDEZH M A , MOLAEIMANESH G R . Impact of system structure on the performance of a hybrid thermal management system for a Li-ion battery module[J]. Journal of Power Sources, 2020, 457, 227993.
DOI |
13 |
JIN X , LI J Q , ZHANG C N , et al. Researches on modeling and experiment of Li-ion battery PTC self-heating in electric vehicles[J]. Energy Procedia, 2016, 104, 62- 67.
DOI |
14 |
BASU S , HARIHARAN K S , KOLAKE S M , et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181, 1- 13.
DOI |
15 |
YANG W , ZHOU F , ZHOU H , et al. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Applied Thermal Engineering, 2020, 175, 115331.
DOI |
16 |
WANG T , TSENG K J , ZHAO J , et al. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Applied Energy, 2014, 134, 229- 238.
DOI URL |
17 | 彭影. 车用锂离子电池冷却方案优化设计[M]. 杭州: 浙江大学, 2015: 10- 11. |
PENG Y . Optimal design of cooling scheme for automotive Lithium ion batteries[M]. Hangzhou: Zhejiang University, 2015: 10- 11. | |
18 | 饶中浩. 基于固液相变传热介质的动力电池热管理研究[M]. 广州: 华南理工大学, 2013: 15- 18. |
RAO Z H . Research on power battery thermal management based on solid-liquid variable heat transfer medium[M]. Guangzhou: South China University of Technology, 2013: 15- 18. | |
19 |
WU W , ZHANG G , KE X , et al. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J]. Energy Conversion and Management, 2015, 101, 278- 284.
DOI |
20 |
SUN Z , FAN R , YAN F , et al. Thermal management of the lithium-ion battery by the composite PCM-Fin structures[J]. International Journal of Heat and Mass Transfer, 2019, 145, 118739.
DOI |
21 |
WENG J , OUYANG D , YANG X , et al. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Applied Thermal Engineering, 2020, 167, 114698.
DOI |
22 |
QIAN Z , LI Y , RAO Z . Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126, 622- 631.
DOI |
23 |
MOHAMMED A H , EAMAEELI R , ALINIAGERDROUDBARI H , et al. Dual-purpose cooling plate for thermal management of prismatic lithium-ion batteries during normal operation and thermal runaway[J]. Applied Thermal Engineering, 2019, 160, 114106.
DOI |
24 |
BAI F , CHEN M , SONG W , et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126, 17- 27.
DOI |
25 | 安治国, 赵琳, 陈星, 等. 流道布置对方形锂电池组温度场的影响[J/OL]. 电源学报, 2019: 1-10. [2020-09-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20191008.1111.006.html. |
AN Z G, ZHAO L, CHEN X, et al. Effect of runner layout on the temperature field of square lithium battery[J/OL]. Journal of Power Supply, 2019: 1-10. [2020-09-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20191008.1111.006.html. | |
26 |
姜水生, 何志坚, 文华. 基于电-热耦合模型的锂离子电池组热管理系统设计与优化[J]. 中国机械工程, 2018, 29, 1847- 1853.
DOI |
JIANG S S , HE Z J , WEN H . Design and optimization of the thermal management system of lithium ion battery based on the electric-thermal coupling model[J]. China Mechanical Engineering, 2018, 29, 1847- 1853.
DOI |
|
27 | HERMANN W A, KOHN S, BERDICHEVSKY E. Optimized cooling tube geometry for intimate thermal contact with cells[EB/OL]. (2008-12-24)[2020-09-01]. http://patentimages.storage.googleapis.com/6d/ac/a0/c74a48f8814d5f/WO2008156737A1.pdf. |
28 |
ZHAO C , SOUSA A C M , JIANG F . Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129, 660- 670.
DOI |
29 | BESLING W F A, NIESSEN R A H, KLOOTWIJK J H, et al. Energy storage system: IB2009/054192[P]. 2010-04-15. |
30 |
LAN C , XU J , QIAO Y , et al. Thermal management for high power lithium-ion battery by minichannel aluminum tubes[J]. Applied Thermal Engineering, 2016, 101, 284- 292.
DOI |
31 |
DAN D , YAO C , ZHANG Y , et al. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied Thermal Engineering, 2019, 162, 114183.
DOI |
32 |
ZHANG W , QIU J , YIN X , et al. A novel heat pipe assisted separation type battery thermal management system based on phase change material[J]. Applied Thermal Engineering, 2020, 165, 114571.
DOI |
33 |
SONG L , ZHANG H , YANG C . Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module[J]. International Journal of Heat and Mass Transfer, 2019, 133, 827- 841.
DOI |
34 |
WEI L T , JIA L , AN Z J , et al. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates[J]. Journal of Thermal Science, 2020, 29 (4): 1001- 1009.
DOI |
35 |
CAO J , LUO M , FANG X , et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191, 116565.
DOI |
36 |
JAGUEMONT J , OMAR N , VAN DEN BOSSCHE P , et al. Phase-change materials (PCM) for automotive applications: a review[J]. Applied Thermal Engineering, 2018, 132, 308- 320.
DOI |
37 |
SAFDARI M , AHMADI R , SADEGHZADEH S . Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management[J]. Energy, 2020, 193, 116840.
DOI |
38 |
WANG Y , ZHANG G , YANG X . Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162, 114200.
DOI |
39 |
KANG D , LEE P Y , YOO K , et al. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management[J]. Journal of Energy Storage, 2020, 27, 101017.
DOI |
40 |
ZHANG H , LI C , ZHANG R , et al. Thermal analysis of a 6s4p lithium-ion battery pack cooled by cold plates based on a multi-domain modeling framework[J]. Applied Thermal Engineering, 2020, 173, 115216.
DOI |
41 | JU X , XU C , ZHAO Y , et al. Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal[J]. International Journal of Heat and Mass Transfer, 2018, 126, 1206- 1218. |
42 | 柯玉超, 吴蕾, 方炳虎, 等. 动力电池包密封件密封与可靠性研究[C]//中国汽车工程学会. 2019中国汽车工程学会年会论文集(4). 北京: 中国汽车工程学会, 2019: 4. |
KE Y C, WU L, FANG B H, et al. Researching on sealing and reliability of rubber seal for battery pack[C]//China Society of Automotive Engineers. Proceedings of the 2019 Annual Meeting of China Society of Automotive Engineers(4). Beijing: China Society of Automotive Engineers, 2019: 4. | |
43 |
DRAKE S J , MARTIN M , WETZ D A , et al. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements[J]. Journal of Power Sources, 2015, 285, 266- 273.
DOI |
44 |
ZHANG H , WU X , WU Q , et al. Experimental investigation of thermal performance of large-sized battery module using hybrid PCM and bottom liquid cooling configuration[J]. Applied Thermal Engineering, 2019, 159, 113968.
DOI |
45 |
YATES M , AKRAMI M , JAVADI A A . Analysing the performance of liquid cooling designs in cylindrical lithium-ion batteries[J]. Journal of Energy Storage, 2021, 33, 100913.
DOI |
46 | JEON D H , BAEK S M . Thermal modeling of cylindrical lithium ion battery during discharge cycle[J]. Energy Conversion and Management, 2011, 52 (8/9): 2973- 2981. |
[1] | 屠楠, 刘家琛, 徐静, 方嘉宾, 马彦花. 管壳式相变蓄热器的蓄释热过程性能分析[J]. 发电技术, 2024, 45(3): 508-516. |
[2] | 刘学, 李国栋, 张瑞颖, 侯一晨, 陈磊, 杨立军. 电站空冷岛轴流风机模型研究[J]. 发电技术, 2024, 45(3): 545-557. |
[3] | 龚思琦, 云再鹏, 许明, 敖乐, 李初福, 黄凯, 孙晨. 基于三元催化剂的固体氧化物燃料电池尾气催化燃烧数值模拟[J]. 发电技术, 2024, 45(2): 331-340. |
[4] | 高德扬, 蒋中一, 张锴, 孟境辉. 基于相变材料的半导体热电发电器性能优化研究[J]. 发电技术, 2023, 44(6): 842-849. |
[5] | 杨旸, 李耀强, 张金琦. 基于数值方法的燃气轮机贫预混旋流燃烧室单头部结构设计[J]. 发电技术, 2023, 44(5): 712-721. |
[6] | 杨旸, 郭德三, 李耀强, 张金琦. 燃气轮机贫预混多旋流组合燃烧室头部结构设计[J]. 发电技术, 2023, 44(2): 183-192. |
[7] | 刘文斌, 李璐璐, 李晓金, 姚宣, 杨海瑞. 脱硫湿烟气喷淋冷凝过程中的参数优化研究[J]. 发电技术, 2023, 44(1): 107-114. |
[8] | 赵珈卉, 田立亭, 程林. 锂离子电池状态估计与剩余寿命预测方法综述[J]. 发电技术, 2023, 44(1): 1-17. |
[9] | 吴荣辉, 刘冬, 郁冶, 牟凯龙, 赵兰浩. 基于浸入边界法的海上风电双向流固耦合数值模拟方法[J]. 发电技术, 2023, 44(1): 44-52. |
[10] | 张弘毅, 曲立涛. 9F级燃机选择性催化还原脱硝数值模拟研究与应用[J]. 发电技术, 2023, 44(1): 78-84. |
[11] | 魏少鑫, 金鹰, 王瑾, 杨周飞, 崔超婕, 骞伟中. 电池型电容器技术发展趋势展望[J]. 发电技术, 2022, 43(5): 748-759. |
[12] | 陈晓光, 杨秀媛, 王镇林, 王浩扬. 考虑多目标优化模型的风电场储能容量配置方案[J]. 发电技术, 2022, 43(5): 718-730. |
[13] | 王宁, 陈志强, 刘明义, 张鹏, 曹曦, 陆泽宇, 雷浩东, 曹传钊, 严晓, 周国鹏. 基于模糊综合评价的锂离子电池健康状态评估[J]. 发电技术, 2022, 43(5): 784-791. |
[14] | 闫帅帅, 陆洋, 侯文会, 刘凯. 面向锂电储能系统的本质安全电池智能隔膜材料[J]. 发电技术, 2022, 43(5): 792-800. |
[15] | 孔文俊, 张艳森, 汤效平, 张伟阔. 大容量储能锂电池电芯产热特性研究[J]. 发电技术, 2022, 43(5): 801-809. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||