发电技术 ›› 2025, Vol. 46 ›› Issue (3): 570-578.DOI: 10.12096/j.2096-4528.pgt.24176
• 新能源 • 上一篇
汪义财1, 喻鑫2, 于敦喜2
收稿日期:2024-08-05
修回日期:2024-11-20
出版日期:2025-06-30
发布日期:2025-06-16
通讯作者:
喻鑫
作者简介:基金资助:Yicai WANG1, Xin YU2, Dunxi YU2
Received:2024-08-05
Revised:2024-11-20
Published:2025-06-30
Online:2025-06-16
Contact:
Xin YU
Supported by:摘要:
目的 芦竹作为一种单位面积产量高、可集中种植的能源植物,具有大规模替代煤炭燃烧发电和降低CO2排放的广阔前景。在“双碳”目标和煤电机组低碳化改造的要求下,大力发展基于芦竹这一能源植物的清洁高效燃烧技术,是十分适合我国国情的一种重要低碳能源利用途径。为此综述了芦竹燃烧利用的研究进展,旨在为生物质能的规模化利用提供参考。 方法 通过文献研究法对芦竹的燃烧利用进行了全面调研,对现有研究成果进行了归纳分析。总结了芦竹的燃料特性、预处理方法及效果、燃烧和污染物排放特性以及芦竹燃烧工业试验研究,并介绍了芦竹栽培的环境效应。 结论 芦竹具有大规模替代煤炭供热和发电的巨大潜力,结合我国煤电机组低碳化改造的要求,电厂掺烧芦竹具有广阔的前景。
中图分类号:
汪义财, 喻鑫, 于敦喜. 能源植物芦竹燃烧利用研究进展[J]. 发电技术, 2025, 46(3): 570-578.
Yicai WANG, Xin YU, Dunxi YU. Research Progress on Utilization of Arundo Donax L. Combustion[J]. Power Generation Technology, 2025, 46(3): 570-578.
| 来源 | 工业分析 | 元素分析 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| A/% | V/% | FC/% | Cd/% | Hd/% | Od/% | Nd/% | Sd/% | 高位发热量/(MJ/kg) | |
| 文献[ | 3.91 | 83.59 | 12.50 | 43.88 | 5.93 | 45.29 | 0.71 | 0.28 | 19.19 |
| 文献[ | 1.78 | 79.70 | 18.52 | 41.71 | 6.17 | 49.13 | 0.64 | 0.57 | 18.96 |
| 文献[ | 7.00 | 77.12 | 15.88 | 46.28 | 5.46 | 40.00 | 0.80 | 0.47 | 20.14 |
| 文献[ | 8.00 | 76.10 | 15.90 | 42.80 | 6.40 | 42.00 | 0.60 | 0.12 | 21.70 |
| 文献[ | 3.10 | 68.40 | 28.50 | 44.80 | 6.30 | 45.10 | 0.60 | 0.08 | 24.30 |
| 文献[ | 5.08 | * | * | 45.55 | 5.70 | * | 0.24 | * | 18.02 |
| 文献[ | 5.79 | 81.20 | 12.79 | 45.90 | 6.78 | 39.67 | 1.64 | * | 17.14 |
| 文献[ | 4.60 | 71.30 | 24.10 | 47.03 | 5.72 | 42.36 | 0.29 | * | * |
| 文献[ | 15.05 | 69.97 | 14.98 | 39.74 | 5.52 | 38.01 | 1.40 | 0.26 | 16.72 |
| 文献[ | 8.28 | 74.32 | 17.40 | 45.23 | 5.76 | 39.73 | 0.70 | 0.31 | 18.15 |
表1 芦竹的工业与元素分析及高位发热量
Tab. 1 Proximate and ultimate analyses and higher heating values of Arundo donax L.
| 来源 | 工业分析 | 元素分析 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| A/% | V/% | FC/% | Cd/% | Hd/% | Od/% | Nd/% | Sd/% | 高位发热量/(MJ/kg) | |
| 文献[ | 3.91 | 83.59 | 12.50 | 43.88 | 5.93 | 45.29 | 0.71 | 0.28 | 19.19 |
| 文献[ | 1.78 | 79.70 | 18.52 | 41.71 | 6.17 | 49.13 | 0.64 | 0.57 | 18.96 |
| 文献[ | 7.00 | 77.12 | 15.88 | 46.28 | 5.46 | 40.00 | 0.80 | 0.47 | 20.14 |
| 文献[ | 8.00 | 76.10 | 15.90 | 42.80 | 6.40 | 42.00 | 0.60 | 0.12 | 21.70 |
| 文献[ | 3.10 | 68.40 | 28.50 | 44.80 | 6.30 | 45.10 | 0.60 | 0.08 | 24.30 |
| 文献[ | 5.08 | * | * | 45.55 | 5.70 | * | 0.24 | * | 18.02 |
| 文献[ | 5.79 | 81.20 | 12.79 | 45.90 | 6.78 | 39.67 | 1.64 | * | 17.14 |
| 文献[ | 4.60 | 71.30 | 24.10 | 47.03 | 5.72 | 42.36 | 0.29 | * | * |
| 文献[ | 15.05 | 69.97 | 14.98 | 39.74 | 5.52 | 38.01 | 1.40 | 0.26 | 16.72 |
| 文献[ | 8.28 | 74.32 | 17.40 | 45.23 | 5.76 | 39.73 | 0.70 | 0.31 | 18.15 |
| 来源 | 物质质量分数/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | Fe2O3 | |
| 文献[ | 0.01 | 6.04 | 0.41 | 35.47 | 4.29 | 2.05 | 29.54 | 11.61 | 0.25 |
| 文献[ | — | 4.72 | 2.97 | 18.59 | — | 5.21 | 52.16 | 1.31 | 0.41 |
| 文献[ | 0.20 | 4.70 | 3.30 | 49.80 | 5.30 | 0.32 | 16.20 | 2.80 | 2.40 |
| 文献[ | 0.10 | 4.80 | 3.50 | 43.00 | 3.90 | 0.21 | 20.20 | 3.00 | 3.30 |
表2 芦竹灰成分分析 (Arundo donax L.)
Tab. 2 Ash composition analysis of
| 来源 | 物质质量分数/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | K2O | CaO | Fe2O3 | |
| 文献[ | 0.01 | 6.04 | 0.41 | 35.47 | 4.29 | 2.05 | 29.54 | 11.61 | 0.25 |
| 文献[ | — | 4.72 | 2.97 | 18.59 | — | 5.21 | 52.16 | 1.31 | 0.41 |
| 文献[ | 0.20 | 4.70 | 3.30 | 49.80 | 5.30 | 0.32 | 16.20 | 2.80 | 2.40 |
| 文献[ | 0.10 | 4.80 | 3.50 | 43.00 | 3.90 | 0.21 | 20.20 | 3.00 | 3.30 |
| 测试项目 | 元素质量比/(mg/kg) | |||
|---|---|---|---|---|
| K | Na | Ca | Mg | |
| 水洗前 | 11 187 | 61 | 838 | 626 |
| 水洗后 | 5 052 | 41 | 711 | 486 |
表3 水洗前后碱金属含量
Tab. 3 Alkali metal contents before and after washing
| 测试项目 | 元素质量比/(mg/kg) | |||
|---|---|---|---|---|
| K | Na | Ca | Mg | |
| 水洗前 | 11 187 | 61 | 838 | 626 |
| 水洗后 | 5 052 | 41 | 711 | 486 |
| 芦竹种类 | 元素质量比/(mg/kg) | ||||||
|---|---|---|---|---|---|---|---|
| Ca | Mg | P | K | Na | S | Cl | |
| 干燥芦竹 | 2 750 | 2 110 | 1 590 | 22 500 | 256 | 3 230 | 4 950 |
| 水洗后干燥芦竹 | 1 330 | 458 | 321 | 368 | 76 | 801 | 113 |
| 烘焙芦竹 | 2 540 | 2 060 | 1 695 | 25 050 | 238 | 3 095 | 6 045 |
| 水洗后烘焙芦竹 | 2 150 | 1 230 | 756 | 2 340 | 282 | 886 | 200 |
表4 耦合水洗结果对比
Tab. 4 Comparison of coupled washing results
| 芦竹种类 | 元素质量比/(mg/kg) | ||||||
|---|---|---|---|---|---|---|---|
| Ca | Mg | P | K | Na | S | Cl | |
| 干燥芦竹 | 2 750 | 2 110 | 1 590 | 22 500 | 256 | 3 230 | 4 950 |
| 水洗后干燥芦竹 | 1 330 | 458 | 321 | 368 | 76 | 801 | 113 |
| 烘焙芦竹 | 2 540 | 2 060 | 1 695 | 25 050 | 238 | 3 095 | 6 045 |
| 水洗后烘焙芦竹 | 2 150 | 1 230 | 756 | 2 340 | 282 | 886 | 200 |
| 种类 | 污染物 | |||||
|---|---|---|---|---|---|---|
| 二氧化碳/(mmol/g) | 一氧化碳/ (mmol/g) | 挥发性有机物/(mmol/g) | 二氧化碳/ % | 一氧化碳/ % | 挥发性有机物/ % | |
| 芒草 | 22.4 | 3.38 | 0.94 | 61.5 | 9.2 | 2.6 |
| 芦竹 | 23.4 | 1.69 | 1.75 | 70.3 | 5.1 | 5.6 |
表5 污染物排放对比
Tab. 5 Comparison of pollutant emissions
| 种类 | 污染物 | |||||
|---|---|---|---|---|---|---|
| 二氧化碳/(mmol/g) | 一氧化碳/ (mmol/g) | 挥发性有机物/(mmol/g) | 二氧化碳/ % | 一氧化碳/ % | 挥发性有机物/ % | |
| 芒草 | 22.4 | 3.38 | 0.94 | 61.5 | 9.2 | 2.6 |
| 芦竹 | 23.4 | 1.69 | 1.75 | 70.3 | 5.1 | 5.6 |
生物质 种类 | 颗粒物质量分数/% | |||
|---|---|---|---|---|
| PM0.1 | PM0.1~1 | PM1~2.5 | PM2.5~10 | |
| 芒草 | 73.7 | 26.2 | 0.1 | 0 |
| 芦竹 | 70.4 | 29.5 | 0.1 | 0 |
表6 颗粒物排放对比
Tab. 6 Comparison of particle emissions
生物质 种类 | 颗粒物质量分数/% | |||
|---|---|---|---|---|
| PM0.1 | PM0.1~1 | PM1~2.5 | PM2.5~10 | |
| 芒草 | 73.7 | 26.2 | 0.1 | 0 |
| 芦竹 | 70.4 | 29.5 | 0.1 | 0 |
| 参数 | 生物质种类 | ||
|---|---|---|---|
| 芦竹 | 柳枝稷 | 木屑 | |
| 水分质量分数/% | 22 | 9 | 8 |
| 平均负荷/kW | 71 | 93 | 223 |
| 运行时间/h | 45 | 19 | 7 |
| 平均初始燃烧温度/℃ | 990 | 850 | 1 043 |
| 能量密度/(MJ/m3) | 2 068 | 9 620 | 12 090 |
| 体积密度/(kg/m3) | 116 | 585 | 644 |
表7 芦竹燃烧试验数据
Tab. 7 Experimental data of Arundo donax L. combustion
| 参数 | 生物质种类 | ||
|---|---|---|---|
| 芦竹 | 柳枝稷 | 木屑 | |
| 水分质量分数/% | 22 | 9 | 8 |
| 平均负荷/kW | 71 | 93 | 223 |
| 运行时间/h | 45 | 19 | 7 |
| 平均初始燃烧温度/℃ | 990 | 850 | 1 043 |
| 能量密度/(MJ/m3) | 2 068 | 9 620 | 12 090 |
| 体积密度/(kg/m3) | 116 | 585 | 644 |
| 种类 | 污染物质量浓度/(mg/m3) | |||||
|---|---|---|---|---|---|---|
| PM1 | NO x | HCl | SO2 | CO | 总颗粒物 | |
| 芦竹 | 67 | 363 | 67 | 278 | 443 | 102 |
| 柳枝稷 | 50 | 368 | 18 | 91 | 145 | 58 |
| 木屑 | 16 | 106 | 3 | 3 | 1 | 21 |
表8 芦竹燃烧污染物平均排放量
Tab. 5 Average pollutant emissions from Arundo donax L. combustion
| 种类 | 污染物质量浓度/(mg/m3) | |||||
|---|---|---|---|---|---|---|
| PM1 | NO x | HCl | SO2 | CO | 总颗粒物 | |
| 芦竹 | 67 | 363 | 67 | 278 | 443 | 102 |
| 柳枝稷 | 50 | 368 | 18 | 91 | 145 | 58 |
| 木屑 | 16 | 106 | 3 | 3 | 1 | 21 |
| 1 | 郑妍,姚宣,陈训强 .生物质气化耦合发电体系的合成气组分与能量分析[J].发电技术,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 |
| ZHENG Y, YAO X, CHEN X Q .Analysis of syngas components and energy in biomass gasification coupled power generation system[J].Power Generaton Technology,2023,44(6):859-864. doi:10.12096/j.2096-4528.pgt.22164 | |
| 2 | 冯伟忠,李励 .“双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J].发电技术,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 |
| FENG W Z, LI L .Research and practice on development path of low-carbon,zero-carbon and negative carbon transformation of coal-fired power units under“double carbon”targets[J].Power Generation Technology,2022,43(3):452-461. doi:10.12096/j.2096-4528.pgt.22061 | |
| 3 | 张哲宇,刘力,吴潇雨,等 .计及海水制氢与生物质转化的海岛微能网随机调度优化模型[J].智慧电力,2024,52(8):64-72. |
| ZHANG Z Y, LIU L, WU X Y,et al .Optimization model of island micro-energy grid stochastic scheduling considering seawater hydrogen production and biomass conversion[J].Smart Power,2024,52(8):64-72. | |
| 4 | 王永利,韩煦,刘晨,等 .基于生-光耦合利用的乡村电-热综合能源系统规划[J].电力建设,2023,44(3):1-14. |
| WANG Y L, HAN X, LIU C,et al .Rural electricity-heat integrated energy system planning based on coupling utilization of biomass and solar resources[J].Electric Power Construction,2023,44(3):1-14. | |
| 5 | 张金良,胡泽萍 .计及多重不确定性的生物质电厂库存优化模型[J].中国电力,2024,57(12):157-168. |
| ZHANG J L, HU Z P .Inventory optimization model of biomass power plant considering multiple uncertainties[J].Electric Power,2024,57(12):157-168. | |
| 6 | 张业伟,文中,王灿,等 .IDR激励下考虑光热生物质能利用的源荷协调优化调度策略[J].电力工程技术,2024,43(6):111-122. |
| ZHANG Y W, WEN Z, WANG C,et al .Source-load coordinated optimal scheduling strategy considering solar thermal biomass utilization under integrated demand response incentives[J].Electric Power Engineering Technology,2024,43(6):111-122. | |
| 7 | 谭芙蓉,吴波,代立春,等 .纤维素类草本能源植物的研究现状[J].应用与环境生物学报,2014,20(1):162-168. |
| TAN F R, WU B, DAI L C,et al .Research and prospect of cellulosic herbaceous energy plant[J].Chinese Journal of Applied and Environmental Biology,2014,20(1):162-168. | |
| 8 | 林兴生,林占熺,林冬梅,等 .5种菌草苗期抗盐性的评价[J].福建农林大学学报(自然科学版),2013,42(2):195-201. |
| LIN X S, LIN Z X, LIN D M,et al .Assessment on salt resistance at seedling stage of 5 species of Juncao under NaCl stress[J].Journal of fujian agriculture and forestry university (natural science edition),2013,42(2):165-201. | |
| 9 | 林兴生,林占熺,林辉,等 .5种菌草苗期对碱胁迫的生理响应及抗碱性评价[J].植物生理学报,2013,49(2):167-174. |
| LIN X S, LIN Z X, LIN H,et al .Physiological responses and alkaline-tolerance evaluation on 5 species of Juncao under alkaline stress during seedling stage[J].Plant Physiology Journal,2013,49(2):167-174. | |
| 10 | 林兴生,林占熺,林冬梅,等 .低温胁迫5种菌草的抗寒性评价[J].草业学报,2013,22(2):227-234. |
| LIN X S, LIN Z X, LIN D M,et al .Cold-tolerance of 5 species of Juncao under low temperature stress[J].Acta Prataculturae Sinica,2013,22(2):227-234. | |
| 11 | LEWIS M, GARCIA-PEREZ M,PA B,et al .Using closed-loop biomass to displace coal at Portland general electric’s boardman power plant carbon implications[EB/OL].(2013-10-12)[2024-07-12].. |
| 12 | KRIČKA T, MATIN A, BILANDŽIJA N,et al .Biomass valorisation of Arundo donax L.,Miscanthus×giganteus and Sida hermaphrodita for biofuel production[J].International Agrophysics,2017,31(4):575-581. doi:10.1515/intag-2016-0085 |
| 13 | OGINNI O, SINGH K .Pyrolysis characteristics of Arundo donax harvested from a reclaimed mine land[J].Industrial Crops and Products,2019,133:44-53. doi:10.1016/j.indcrop.2019.03.014 |
| 14 | BA Y, LIU F, WANG X,et al .Pyrolysis of C3 energy plant (Arundo donax):thermogravimetry,mechanism,and potential evaluation[J].Industrial Crops and Products,2020,149:112337. doi:10.1016/j.indcrop.2020.112337 |
| 15 | VAMVUKA D, SFAKIOTAKIS S .Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics[J].Renewable Energy,2011,36(9):2433-2439. doi:10.1016/j.renene.2011.02.013 |
| 16 | COULSON M, BRIDGWATER A V .Fast pyrolysis of annually harvested crops for bioenergy applications[C]//Proceedings of the 2nd World Conference on Biomass.Rome,Italy,2004:10-14. |
| 17 | SAIKIA R, CHUTIA R S, KATAKI R,et al .Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials[J].Bioresource Technology,2015,188:265-272. doi:10.1016/j.biortech.2015.01.089 |
| 18 | VERNERSSON T, BONELLI P R, CERRELLA E G,et al .Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation[J].Bioresource Technology,2002,83(2):95-104. doi:10.1016/s0960-8524(01)00205-x |
| 19 | BASSO M C, CERRELLA E G, BUONOMO E L,et al .Thermochemical conversion of Arundo donax into useful solid products[J].Energy Sources,2005,27(15):1429-1438. doi:10.1080/009083190523280 |
| 20 | 韩京昆 .烘焙生物质-煤混烧中灰生成及沉积规律研究[D].武汉:华中科技大学,2020. |
| HAN J K .Study on ash formation and deposition in baking biomass-coal mixed combustion[D].Wuhan:Huazhong University of Science and Technology,2020. | |
| 21 | 国家标准化管理委员会 . 煤炭质量分级第3部分:发热量: [S].北京:中国标准出版社,2022. |
| Standardization Administration of the People’s Republic of China . Classification for quality of coal:part 3:calorific value: [S].Beijing:Standards Press of China,2022. | |
| 22 | NASSI O DI NASSO N, ANGELINI L G, BONARI E .Influence of fertilisation and harvest time on fuel quality of giant reed (Arundo donax L.) in central Italy[J].European Journal of Agronomy,2010,32(3):219-227. doi:10.1016/j.eja.2009.12.001 |
| 23 | PAYA J, ROSELLÓ J, MONZÓ J M,et al .An approach to a new supplementary cementing material:Arundo donax straw ash[J].Sustainability,2018,10(11):4273. doi:10.3390/su10114273 |
| 24 | 王朋,张建良,王广伟,等 .热解制备芦竹半焦基础性能分析[J].中国冶金,2019,29(2):12-16. |
| WANG P, ZHANG J L, WANG G W,et al .Analysis of basic characteristics of Arundo donax char prepared by pyrolysis[J].China Metallurgy,2019,29(2):12-16. | |
| 25 | MONTI A, DI VIRGILIO N, VENTURI G .Mineral composition and ash content of six major energy crops[J].Biomass and Bioenergy,2008,32(3):216-223. doi:10.1016/j.biombioe.2007.09.012 |
| 26 | PRINS M J, PTASINSKI K J, JANSSEN F J J G .Torrefaction of wood part 1:weight loss kinetics[J].Journal of Analytical and Applied Pyrolysis,2006,77(1):28-34. doi:10.1016/j.jaap.2006.01.002 |
| 27 | PRINS M J, PTASINSKI K J, JANSSEN F J J G .Torrefaction of wood[J].Journal of Analytical and Applied Pyrolysis,2006,77(1):35-40. doi:10.1016/j.jaap.2006.01.001 |
| 28 | GARCIA-PEREZ M, ENGLUND K, WANG Z,et al .Arundo donax sample preparation, torrefaction and analyses[EB/OL].(2011-08-12)[2024-07-12].. |
| 29 | MATYAS J, JOHNSON B R, CABE J E .Characterization of dried and torrefied Arundo donax biomass for inorganic species prior to combustion[R].Richland,WA (United States):Pacific Northwest National Lab (PNNL),2012. doi:10.2172/1054851 |
| 30 | CHANDLER D S, RESENDE F L P .Effects of warm water washing on the fast pyrolysis of Arundo donax[J].Biomass and Bioenergy,2018,113:65-74. doi:10.1016/j.biombioe.2018.03.008 |
| 31 | 吴艳,田红,王运民,等 .芦竹燃烧动力学不同反应机理的研究[J].应用化工,2016,45(4):796-800. |
| WU Y, TIAN H, WANG Y M,et al .Combustion kinetics of donax linn[J].Applied Chemical Industry,2016,45(4):796-800. | |
| 32 | 田红,吴艳,尹艳山,等 .纤维素类草本能源植物燃烧动力学研究[J].燃烧科学与技术,2016,22(4):335-341. |
| TIAN H, WU Y, YIN Y S,et al .Combustion kinetics of cellulosic energy-herbs[J].Journal of Combustion Science and Technology,2016,22(4):335-341. | |
| 33 | 马莹 .能源植物与褐煤混燃特性[D].北京:华北电力大学,2017. doi:10.17775/cseejpes.2018.00060 |
| MA Y .Co-combustion characteristics of energy plants and lignite[D].Beijing:North China Electric Power University,2017. doi:10.17775/cseejpes.2018.00060 | |
| 34 | JEGUIRIM M, DORGE S, TROUVÉ G .Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere:Arundo donax and Miscanthus giganthus[J].Bioresource Technology,2010,101(2):788-793. doi:10.1016/j.biortech.2009.05.063 |
| 35 | BILGIN S, KURKLU C E A .A study on flue gas emissions of different reed plants as briquetted fuelwood[EB/OL].(2012-06-15)[2024-07-12].. |
| 36 | VERÓNICA C, ALEJANDRA M, ESTELA S .Thermal behaviour and emission characteristics of Arundo donax L.as potential biofuel[J].BioEnergy Research,2023,16(3):1618-1628. doi:10.1007/s12155-022-10556-5 |
| 37 | DAHL J, OBERNBERGER I .Evaluation of the combustion characteristics of four perennial energy crops (Arundo donax,Cynara cardunculus, Miscanthus x giganteus and Panicum virgatum)[C]//Proceedings of the 2nd World Conference on Biomass for Energy,Industry and Climate Protection.Rome,Italy:IEEE,2004:10-14. |
| 38 | MODY J, SAVELIVE R, BAR-ZIV E,et al .Production and characterization of biocoal for coal-fired boilers[C]//ASME 2014 Power Conference.Baltimore,Maryland,USA:ASME,2014:V001T01A003. doi:10.1115/power2014-32036 |
| 39 | MODY J, SAVELIVE R, BAR-ZIV E,et al .Firing tests of biocoal[C]//ASME 2014 Power Conference.Baltimore,Maryland,USA:ASME,2014:V001T01A004. doi:10.1115/power2014-32037 |
| 40 | HATT R, RODGERS D A T, CURTIS R .100% test burn of torrefied wood pellets at a full-scale pulverized coal fired utility steam generator[C]//ASME 2018 12th International Conference on Energy Sustainability.Lake Buena Vista,Florida,USA:ASME,2018:51418. doi:10.1115/es2018-7273 |
| 41 | GE X, XU F, VASCO-CORREA J,et al .Giant reed:a competitive energy crop in comparison with miscanthus[J].Renewable and Sustainable Energy Reviews,2016,54:350-362. doi:10.1016/j.rser.2015.10.010 |
| 42 | CEOTTO E, DI CANDILO M .Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil:the path forward?[J].Biomass and Bioenergy,2010,34(11):1614-1623. doi:10.1016/j.biombioe.2010.06.002 |
| 43 | COFFMAN G C .Factors influencing invasion of giant reed (Arundo donax) in riparian ecosystems of Mediterranean-type climate regions[D].University of California, Los Angeles,2007. doi:10.1201/noe0849396274.ch101 |
| [1] | 张俊, 蒲天骄, 高文忠, 刘友波, 裴玮, 许沛东, 高天露, 白昱阳. 电力系统智能计算的关键技术及应用展望[J]. 发电技术, 2025, 46(3): 421-437. |
| [2] | 徐浩然, 张瑾昀, 马歆, 雷文强, 曹杰铭. 基于大语言模型的图检索增强生成技术在核电领域的应用与展望[J]. 发电技术, 2025, 46(3): 454-466. |
| [3] | 杨博, 张子健. 基于人工智能的可再生能源电解水制氢关键技术及发展前景分析[J]. 发电技术, 2025, 46(3): 482-495. |
| [4] | 刘宿城, 栾李, 李龙, 洪涛, 刘晓东. 基于人工智能的直流微电网大信号稳定性评估方法研究[J]. 发电技术, 2025, 46(3): 496-507. |
| [5] | 王永康, 易俊, 谢晓頔. 风光氢氨醇一体化技术和产业综述[J]. 发电技术, 2025, 46(3): 556-569. |
| [6] | 侯朗博, 孙昊, 陈衡, 高悦. 基于需求响应与Stackelberg博弈的小区综合能源系统优化调度[J]. 发电技术, 2025, 46(2): 219-230. |
| [7] | 张佳鑫, 彭勇刚, 孙静. 考虑需求响应和碳交易的园区氢电耦合系统两阶段鲁棒优化调度[J]. 发电技术, 2025, 46(2): 252-262. |
| [8] | 马恺, 袁至, 李骥. 考虑氢能多元化利用的综合能源系统低碳经济调度[J]. 发电技术, 2025, 46(2): 263-273. |
| [9] | 王奎, 余梦, 张海静, 李妍, 刘哲, 郭军红. 面向光伏消纳和冰蓄冷空调群低碳需求响应的新型配电系统多时间尺度优化策略[J]. 发电技术, 2025, 46(2): 284-295. |
| [10] | 张立栋, 杨智翔, 李文锋, 冯江哲, 张博, 任淮辉, 陈哲, 王兆新. 导流板对水平轴风力机气动特性影响的数值模拟研究[J]. 发电技术, 2025, 46(2): 336-343. |
| [11] | 郑杨, 任禹丞, 王雨薇, 徐丁吉, 杨慧敏. 基于改进云模型的区域电网电能替代综合效益评价[J]. 发电技术, 2025, 46(2): 399-408. |
| [12] | 胡山鹰, 金涌, 张臻烨. 发展新质生产力,实现碳中和[J]. 发电技术, 2025, 46(1): 1-8. |
| [13] | 王凯卉, 刘斌, 折晓会, 刘伟, 范昊, 康宗耀, 徐礼. 氨氢混合燃烧在旋流燃烧器中的动力学特性与NO x 减排机理研究[J]. 发电技术, 2025, 46(1): 171-179. |
| [14] | 郑欣昱, 陈嘉霖, 张飞, 王随林, 刘磊, 苑鹏, 武琪, 黄中. 滇池底泥混燃特性及燃烧动力学分析[J]. 发电技术, 2025, 46(1): 180-189. |
| [15] | 兰国芹, 陆烨, 阚严生, 张继广, 王欢欢, 钟芳, 王承才, 肖黎明, 王照阳. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46(1): 19-30. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||