发电技术 ›› 2025, Vol. 46 ›› Issue (1): 200-208.DOI: 10.12096/j.2096-4528.pgt.24149

• 发电及环境保护 • 上一篇    

磁约束聚变相干汤姆逊散射全电磁模型研究

方新宇1, 夏冬辉1, 黄梅2, 张峰2, 丁永华1   

  1. 1.强电磁技术全国重点实验室,磁约束聚变与等离子体国际合作联合实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074
    2.核工业西南物理研究院,四川省 成都市 610041
  • 收稿日期:2024-07-18 修回日期:2024-09-11 出版日期:2025-02-28 发布日期:2025-02-27
  • 通讯作者: 夏冬辉
  • 作者简介:方新宇(1999),男,硕士研究生,研究方向为聚变与等离子体,m202272080@hust.edu.cn
    夏冬辉(1988),男,博士,副教授,研究方向为脉冲功率与等离子体,本文通信作者,xiadh@hust.edu.cn
    黄梅(1973),女,博士,正高级工程师,研究方向为等离子体加热技术研究,hm@swip.ac.cn
    张峰(1989),男,硕士,高级工程师,研究方向为等离子体加热技术研究,fengz@swip.ac.cn
    丁永华(1974),男,博士,教授,研究方向为磁约束等离子体物理, yhding@hust.edu.cn
  • 基金资助:
    国家自然科学基金项目(U2267209)

Study on the Full Electromagnetic Model of Collective Thomson Scattering in Magnetic Confinement Fusion

Xinyu FANG1, Donghui XIA1, Mei HUANG2, Feng ZHANG2, Yonghua DING1   

  1. 1.State Key Laboratory of Advanced Electromagnetic Technology, International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
    2.Southwestern Institute of Physics, Chengdu 610041, Sichuan Province, China
  • Received:2024-07-18 Revised:2024-09-11 Published:2025-02-28 Online:2025-02-27
  • Contact: Donghui XIA
  • Supported by:
    National Natural Science Foundation of China(U2267209)

摘要:

目的 相干汤姆逊散射(collective Thomson scattering,CTS)是少数几种可以在聚变装置中心提供快离子动理学特性测量的聚变诊断技术之一。然而目前国内外CTS诊断依赖的物理模型存在着缺乏电磁效应和等离子体介电性质不准确等问题,阻碍了CTS诊断理论的发展,因此,亟须开发出一套更加全面的CTS物理模型代码以支撑CTS诊断的发展。 方法 介绍了全电磁模型的建立与推导,分析了全电磁模型与静电模型的共性与差异,基于HL-2A装置研究了不同参数下全电磁模型CTS频谱特性。 结果 全电磁模型在常规诊断上与静电模型的结果吻合较好,此外,全电磁模型在诊断离子-伯恩斯坦波等结构上具有明显优势,利用全电磁模型为HL-2A装置CTS系统优化出了系统参数。 结论 在CTS频谱研究中,全电磁模型具有更完备的功能和巨大的潜力,能够为CTS诊断离子比例等物理量提供强有力的工具;基于国内外更多装置,全电磁模型未来还会具有更广阔的应用前景。

关键词: 核聚变, 磁约束聚变, 快离子, 相干汤姆逊散射, 全电磁模型, 离子-伯恩斯坦波, 离子比例

Abstract:

Objectives Collective Thomson scattering (CTS) is one of the few fusion diagnostic technologies that can provide fast ion kinetic property measurement in the center of fusion devices. However, the physical models that CTS diagnosis relies on at home and abroad currently have problems such as lack of electromagnetic effects and inaccurate plasma dielectric properties, which hinders the development of CTS diagnostic theory. Therefore, it is urgent to develop a more comprehensive CTS physical model code to support the development of CTS diagnosis. Methods The establishment and derivation of the full electromagnetic model is introduced, and the similarities and differences between the full electromagnetic model and the electrostatic model are analysed. The spectrum characteristics of the full electromagnetic model CTS under different parameters are studied based on the HL-2A device. Results The full electromagnetic model is consistent with the electrostatic model results in conventional diagnosis. In addition, the full electromagnetic model has obvious advantages in diagnosing structures such as ion-Bernstein waves. The full electromagnetic model is used to optimize the system parameters for the CTS system of the HL-2A device. Conclusions In CTS spectrum research, the full electromagnetic model has more complete functions and huge potential, and can provide a powerful tool for CTS diagnosis of physical quantities such as ion ratios. In the future, based on more devices at home and abroad, the full electromagnetic model will have broader application prospects.

Key words: nuclear fusion, magnetic confinement fusion, fast ions, collective Thomson scattering, fully electromagnetic model, ion-Bernstein wave, ion ratio

中图分类号: