发电技术 ›› 2024, Vol. 45 ›› Issue (6): 1030-1038.DOI: 10.12096/j.2096-4528.pgt.24128

• 可控核聚变及其发电技术 • 上一篇    

聚变装置高温超导磁体系统电磁仿真方法研究

徐浩睿1,2, 王苏鑫1,2, 李留江1,2, 严植泳1,2, 谭运飞1,2   

  1. 1.强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074
    2.华中科技大学国家脉冲强磁场科学中心,湖北省 武汉市 430074
  • 收稿日期:2024-07-21 修回日期:2024-08-22 出版日期:2024-12-31 发布日期:2024-12-30
  • 通讯作者: 谭运飞
  • 作者简介:徐浩睿(2002),男,硕士研究生,主要研究方向为聚变高温超导磁体的设计与分析,941584026@qq.com
    王苏鑫(2001),男,博士研究生,主要研究方向为聚变超导磁体的设计与分析,d202380856@hust.edu.cn
    李留江(1997),男,博士研究生,主要研究方向为高温超导体的失超传播特性,d202380876@hust.edu.cn
    严植泳(1997),男,博士研究生,主要研究方向为应用超导技术,yanzy15@tsinghua.org.cn
    谭运飞(1980),男,博士,研究员,长期从事稳态强磁场装置的设计和研发,本文通信作者,tanyf@hust.edu.cn
  • 基金资助:
    国家磁约束核聚变能发展研究专项(2022YFE03150104);国家电网有限公司科技项目(5500-202355837A-4-3-WL)

Research on Electromagnetic Simulation Method of Fusion High-Temperature Superconducting Magnet System

Haorui XU1,2, Suxin WANG1,2, Liujiang LI1,2, Zhiyong YAN1,2, Yunfei TAN1,2   

  1. 1.State Key Laboratory of Advanced Electromagnetic Engineering and Technology (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology), Wuhan 430074, Hubei Province, China
    2.Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China
  • Received:2024-07-21 Revised:2024-08-22 Published:2024-12-31 Online:2024-12-30
  • Contact: Yunfei TAN
  • Supported by:
    National MCF Energy R&D Program(2022YFE03150104);State Grid Co., LTD. Technology Program(5500-202355837A-4-3-WL)

摘要:

目的 高温超导磁体系统的应用是未来托卡马克装置的重要技术路线,然而高温超导带材的磁场各向异性以及复杂的导体结构极大地增加了聚变装置高温超导磁体系统电磁设计阶段仿真模拟的复杂度,因此需要针对其电磁仿真以及简化方法开展相应研究。 方法 通过有限元仿真软件COMSOL建立高温超导磁体系统总体电磁仿真模型与各种简化模型,对其相关电磁性能进行了仿真分析与对比。 结果 等离子体区域中心磁场与最大波纹度的计算结果主要受纵场(toroidal field,TF)线圈产生的磁场控制,而TF线圈对中心螺线管(central solenoid,CS)线圈上的磁场分布影响很小。当结合导体的详细结构并考虑高温超导带材的磁场各向异性时,垂直磁场的计算结果与总体模型相比具有较大差异。 结论 在等离子体区域内的相关电磁参数的计算上可以仅考虑TF线圈,而在分析CS线圈上磁场时可忽略TF线圈。此外,通过结合导体结构的平均电流分布,可以有效降低高温超导带材垂直磁场的仿真计算误差。

关键词: 核聚变, 聚变发电, 托卡马克磁体系统, 高温超导磁体, 电磁分析, 模型对比

Abstract:

Objectives The application of high-temperature superconductivity (HTS) magnet system is an important technical route for future tokamak devices. However, the magnetic field anisotropy of the HTS tape and the complex conductor structures greatly increase the complexity of the simulation in the electromagnetic design stage of the HTS magnet system of the fusion device. It is necessary to carry out the corresponding research on the electromagnetic simulation and simplified methods. Methods The finite element simulation software COMSOL was used to establish the overall electromagnetic simulation model and various simplified models of the HTS magnet system, and the related electromagnetic properties were simulated and compared. Results The calculation results of the central magnetic field and the maximum ripple of plasma are mainly controlled by the magnetic field generated by the toroidal field (TF) coil. However, the TF coil has little influence on the magnetic field distribution on the central solenoid (CS) coil. When the detailed structure of the conductor is combined and the magnetic field anisotropy of the HTS tape is considered, the calculated results of the vertical magnetic field show a large difference compared with the overall model. Conclusions The TF coil can only be considered in the calculation of the relevant electromagnetic parameters in the plasma region, and the TF coil can be ignored in the analysis of the magnetic field on the CS coil. In addition, by combining the average current distribution of the conductor structure, the simulation error of the vertical magnetic field of the HTS tape can be effectively reduced.

Key words: nuclear fusion, fusion power, tokamak magnet system, high-temperature superconductivity, electromagnetic analysis, model comparison

中图分类号: