发电技术 ›› 2024, Vol. 45 ›› Issue (4): 651-665.DOI: 10.12096/j.2096-4528.pgt.24021
赵振宇, 包格日乐图, 李炘薪
收稿日期:
2024-01-26
修回日期:
2024-05-10
出版日期:
2024-08-31
发布日期:
2024-08-27
作者简介:
基金资助:
Zhenyu ZHAO, Geriletu BAO, Xinxin LI
Received:
2024-01-26
Revised:
2024-05-10
Published:
2024-08-31
Online:
2024-08-27
Supported by:
摘要:
目的 为科学统筹综合能源系统运行经济性、稳定性和低碳性优化目标,采用何种技术手段以提升能源转化效率,减少系统能源浪费和区域环境污染,是当下综合能源系统合理优化的主要问题。为此,提出一种基于场景生成与信息间隙决策理论的含碳捕集与封存(carbon capture and storage, CCS)—两段式电转气(power to gas, P2G)综合能源系统低碳优化策略。 方法 在技术层面,通过对电P2G两阶段精细化建模,提高氢能利用效率,建立热电联产(combined heating and power,CHP)-CCS-P2G耦合模型;在市场机制层面,引入阶梯型碳交易模型以降低系统中CO2排放量。最终,基于信息间隙决策理论(IGDT)构建不同风险偏好下的优化调度模型。 结果 以典型综合能源系统进行算例分析,仿真结果表明所提模型可提高风光消纳率,实现系统低碳、经济、稳定运行。 结论 该优化策略可有效帮助决策者根据其风险偏好制定风险规避与风险追求策略下的调度方案,实现系统不确定性与经济性的平衡。
中图分类号:
赵振宇, 包格日乐图, 李炘薪. 基于信息间隙决策理论的含碳捕集-电转气综合能源系统优化调度[J]. 发电技术, 2024, 45(4): 651-665.
Zhenyu ZHAO, Geriletu BAO, Xinxin LI. Optimization and Scheduling of Integrated Energy Systems With Carbon Capture and Storage-Power to Gas Based on Information Gap Decision Theory[J]. Power Generation Technology, 2024, 45(4): 651-665.
价格/[元/(MW⋅h)] | 时段 |
---|---|
310 | 01:00—07:00, 23:00—24:00 |
520 | 08:00—11:00, 15:00—18:00, 21:00—22:00 |
820 | 12:00—14:00, 19:00—20:00 |
表1 分时电价
Tab. 1 Time of use
价格/[元/(MW⋅h)] | 时段 |
---|---|
310 | 01:00—07:00, 23:00—24:00 |
520 | 08:00—11:00, 15:00—18:00, 21:00—22:00 |
820 | 12:00—14:00, 19:00—20:00 |
场景 | 碳排放量/t | 碳交易成本/元 | 投资成本/元 | 购电购气成本/元 | 弃风光成本/元 | 运行成本/元 | 总成本/元 |
---|---|---|---|---|---|---|---|
1 | 513.81 | 41 566.11 | 128 532.10 | 230 641.08 | 7 502.90 | 33 902.04 | 442 144.23 |
2 | 458.83 | 17 354.87 | 156 340.18 | 215 067.56 | 3 293.61 | 39 040.39 | 431 096.62 |
3 | 387.14 | 11 752.87 | 178 589.42 | 191 842.27 | 1 317.39 | 39 571.25 | 423 073.20 |
4 | 351.40 | 12 096.76 | 178 589.42 | 183 619.83 | 0 | 40 342.90 | 414 648.92 |
表2 各类场景下运行费用
Tab. 2 Operating costs under various scenarios
场景 | 碳排放量/t | 碳交易成本/元 | 投资成本/元 | 购电购气成本/元 | 弃风光成本/元 | 运行成本/元 | 总成本/元 |
---|---|---|---|---|---|---|---|
1 | 513.81 | 41 566.11 | 128 532.10 | 230 641.08 | 7 502.90 | 33 902.04 | 442 144.23 |
2 | 458.83 | 17 354.87 | 156 340.18 | 215 067.56 | 3 293.61 | 39 040.39 | 431 096.62 |
3 | 387.14 | 11 752.87 | 178 589.42 | 191 842.27 | 1 317.39 | 39 571.25 | 423 073.20 |
4 | 351.40 | 12 096.76 | 178 589.42 | 183 619.83 | 0 | 40 342.90 | 414 648.92 |
风险规避策略 | 偏差 因子 | 风险追求策略 | ||
---|---|---|---|---|
运行成本/元 | 不确定度 | 运行成本/元 | 不确定度 | |
414 648.92 | 0 | 0 | 414 648.92 | 0 |
423 577.77 | 0.018 4 | 0.025 | 407 721.28 | 0.018 5 |
433 494.96 | 0.030 0 | 0.050 | 397 778.94 | 0.029 6 |
442 418.25 | 0.050 5 | 0.075 | 387 827.61 | 0.048 5 |
450 103.51 | 0.067 7 | 0.100 | 381 896.94 | 0.062 6 |
459 955.73 | 0.081 9 | 0.125 | 374 949.76 | 0.077 0 |
467 199.98 | 0.108 5 | 0.150 | 367 027.02 | 0.099 7 |
表3 风险偏好敏感度分析
Tab. 3 Sensitivity analysis of risk preference
风险规避策略 | 偏差 因子 | 风险追求策略 | ||
---|---|---|---|---|
运行成本/元 | 不确定度 | 运行成本/元 | 不确定度 | |
414 648.92 | 0 | 0 | 414 648.92 | 0 |
423 577.77 | 0.018 4 | 0.025 | 407 721.28 | 0.018 5 |
433 494.96 | 0.030 0 | 0.050 | 397 778.94 | 0.029 6 |
442 418.25 | 0.050 5 | 0.075 | 387 827.61 | 0.048 5 |
450 103.51 | 0.067 7 | 0.100 | 381 896.94 | 0.062 6 |
459 955.73 | 0.081 9 | 0.125 | 374 949.76 | 0.077 0 |
467 199.98 | 0.108 5 | 0.150 | 367 027.02 | 0.099 7 |
1 | 姜红丽,刘羽茜,冯一铭,等 .碳达峰、碳中和背景下“十四五”时期发电技术趋势分析[J] .发电技术,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 |
JIANG H L, Liu Y X, FENG Y M,et al .Analysis of power generation technology trend in 14th Five-Year Plan under the background of carbon peak and carbon neutrality[J].Power Generation Technology,2022,43(1):54-64. doi:10.12096/j.2096-4528.pgt.21030 | |
2 | 吴何来,李汪繁,丁先 .“双碳”目标下我国碳捕集、利用与封存政策分析及建议[J].电力建设,2022,43(4):28-37. |
WU H L, LI W F, DING X .Policy analysis and suggestion for carbon capture,utilization and storage under double carbon target in China[J].Electric Power Construction,2022,43(4):28-37. | |
3 | 赵振宇,包格日乐图,张垚 .园区综合能源系统链式多维度柔性适配研究[J].电力建设,2024,45(6):70-79. |
ZHAO Z Y, BAO G, ZHANG Y .Research on chain multidimensional flexibility adaptation of park integrated energy system[J].Electric Power Construction,2024,45(6):70-79. | |
4 | 许洪华,邵桂萍,鄂春良,等 .我国未来能源系统及能源转型现实路径研究[J].发电技术,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 |
XU H H, SHAO G P, E C L,et al .Research on China's future energy system and the realistic path of energy transformation[J].Power Generation Technology,2023,44(4):484-491. doi:10.12096/j.2096-4528.pgt.23002 | |
5 | 亢猛,钟祎勍,石鑫,等 .计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J].发电技术,2023,44(1):25-35. |
KANG M, ZHONG Y Q, SHI X,et al .Research on two-stage optimization approach of community integrated energy system considering load supply reliability[J].Power Generation Technology,2023,44(1):25-35. | |
6 | 刘牧心,梁希,林千果,等 .碳中和驱动下CCUS项目衔接碳交易市场的关键问题和对策分析[J].中国电机工程学报,2021,41(14):4731-4739. |
LIU M X, LIANG X, LIN Q G,et al .Key issues and countermeasures of CCUS projects linking carbon emission trading market under the target of carbon neutrality[J].Proceedings of the CSEE,2021,41(14):4731-4739. | |
7 | 董瑞,高林,何松,等 .CCUS技术对我国电力行业低碳转型的意义与挑战[J].发电技术,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 |
DONG R, GAO L, HE S,et al .Significance and challenges of CCUS technology for low-carbon transformation of China's power industry[J].Power Generation Technology,2022,43(4):523-532. doi:10.12096/j.2096-4528.pgt.22053 | |
8 | ZHAO H, ZHANG C, ZHAO Y,et al .Low-carbon economic dispatching of multi-energy virtual power plant with carbon capture unit considering uncertainty and carbon market[J].Energies,2022,15(19):7225. doi:10.3390/en15197225 |
9 | ZHANG Z, DU J, ZHU K,et al .RETRACTED:optimization scheduling of virtual power plant with carbon capture and waste incineration considering P2G coordination[J].Energy Reports,2022,8:7200-7218. doi:10.1016/j.egyr.2022.05.027 |
10 | YAN Q, AI X, LI J .Low-carbon economic dispatch based on a CCPP-P2G virtual power plant considering carbon trading and green certificates[J].Sustainability,2021,13(22):12423. doi:10.3390/su132212423 |
11 | 孙惠娟,刘昀,彭春华,等 .计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J].电网技术,2021,45(9):3534-3544. |
SUN H J, LIU Y, PENG C H,et al .Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J].Power System Technology,2021,45(9):3534-3544. | |
12 | 李卫东,张力兵,齐大伟,等 .考虑零碳排放的电-气综合能源系统日前优化调度[J].太阳能学报,2023,44(6):145-151. |
LI W D, ZHANG L B, QI D W,et al .Day-ahead optimal dispatch of electric-gas integrated energy systems considering zero-carbon emissions[J].Acta Energiae Solaris Sinica,2023,44(6):145-151. | |
13 | 郭静蓉,向月,吴佳婕,等 .考虑CCUS电转气技术及碳市场风险的电-气综合能源系统低碳调度[J].中国电机工程学报,2023,43(4):1290-1302. |
GUO J R, XIANG Y, WU J J,et al .Low-carbon optimal scheduling of integrated electricity-gas energy systems considering CCUS-P2G technology and risk of carbon market[J].Proceedings of the CSEE,2023,43(4):1290-1302. | |
14 | ZHOU S, SUN K, WU Z,et al .Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty[J].Energy,2020,199:117269. doi:10.1016/j.energy.2020.117269 |
15 | 赵北涛,刘光宇,韩东升 .考虑氢能耦合及阶梯碳交易的综合能源系统多时间尺度低碳优化调度[J].电力科学与技术学报,2023,38(3):35-46. |
ZHAO B T, LIU G Y, HAN D S .Multi-time-scale low-carbon optimal scheduling of integrated energy systems considering hydrogen energy coupling and ladder carbon trading[J].Journal of Electric Power Science and Technology,2023,38(3):35-46. | |
16 | 董海鹰,贠韫韵,马志程,等 .计及多能转换及光热电站参与的综合能源系统低碳优化运行[J].电网技术,2020,44(10):3689-3699. |
DONG H Y, YUN Y Y, MA Z C,et al .Low-carbon optimal operation of integrated energy system considering multi-energy conversion and concentrating solar power plant participation[J].Power System Technology,2020,44(10):3689-3699. | |
17 | 陈登勇,刘方,刘帅 .基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J].电网技术,2022,46(6):2042-2053. |
CHEN D Y, LIU F, LIU S .Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J].Power System Technology,2022,46(6):2042-2053. | |
18 | WU Q, LI C .Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading[J].Energy,2023,270:126832. doi:10.1016/j.energy.2023.126832 |
19 | 吴孟雪,房方 .计及风光不确定性的电-热-氢综合能源系统分布鲁棒优化[J].电工技术学报,2023,38(13):3473-3485. |
WU M X, FANG F .Distributionally robust optimization of electricity-heat-hydrogen integrated energy system with wind and solar uncertainties[J].Transactions of China Electrotechnical Society,2023,38(13):3473-3485. | |
20 | 许明前,陈富燕 .基于数据驱动分布式鲁棒的热-电-气综合能源系统日前经济调度优化[J].电力系统及其自动化学报,2021,33(11):66-73. |
XU M Q, CHEN F Y .Day-ahead economic dispatching of Heat-electricity-gas integrated energy system based on data-driven distributed robust optimization[J].Proceedings of the CSU-EPSA,2021,33(11):66-73. | |
21 | 王旭强,张鑫,刘红昌,等 .考虑源荷双重不确定性的电-气互联综合能源系统分布鲁棒优化调度[J].现代电力,2019,36(6):52-60. |
WANG X Q, ZHANG X, LIU H C,et al .Robust optimal scheduling of power-gas interconnected integrated energy system with double uncertainty of source and load[J].Modern Electric Power,2019,36(6):52-60. | |
22 | TURK A, WU Q, ZHANG M,et al .Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing[J].Energy,2020,196:117130. doi:10.1016/j.energy.2020.117130 |
23 | MANSOURI S A, NEMATBAKHSH E, AHMARINEJAD A,et al .A multi-objective dynamic framework for design of energy hub by considering energy storage system,power-to-gas technology and integrated demand response program[J].Journal of Energy Storage,2022,50:104206. doi:10.1016/j.est.2022.104206 |
24 | 左逢源,张玉琼,赵强,等 .计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J].中国电机工程学报,2022,42(22):8205-8214. |
ZUO F Y, ZHANG Y Q, ZHAO Q,et al .Two-stage stochastic optimization for operation scheduling and capacity allocation of integrated energy production unit considering supply and demand uncertainty[J].Proceedings of the CSEE,2022,42(22):8205-8214. | |
25 | 彭春华,陈露,张金克,等 .基于分类概率机会约束IGDT的配网储能多目标优化配置[J].中国电机工程学报,2020,40(9):2809-2818. |
PENG C H, CHEN L, ZHANG J K,et al .Multi-objective optimal allocation of energy storage in distribution network based on classified probability chance constraint information gap decision theory[J].Proceedings of the CSEE,2020,40(9):2809-2818. | |
26 | 徐琴,金海翔,边晓燕,等 .基于混合IGDT的电-气综合能源系统弹性提升灾前规划方法[J].电力系统保护与控制,2023,51(21):86-95. |
XU Q, JIN H X, BIAN X Y,et al .Pre-disaster planning method for resilience enhancement of integrated electric-gas energy system based on hybrid IGDT[J].Power System Protection and Control,2023,51(21):86-95. | |
27 | BOROUMANDFAR G, KHAJEHZADEH A, ESLAMI M,et al .Information gap decision theory with risk aversion strategy for robust planning of hybrid photovoltaic/wind/battery storage system in distribution networks considering uncertainty[J].Energy,2023,278:127778. doi:10.1016/j.energy.2023.127778 |
28 | 闫庆友,刘达,李金孟,等 .基于场景生成与IGDT的风光-碳捕集-P2G虚拟电厂经济调度[J].智慧电力,2023,51(2):1-7. doi:10.3969/j.issn.1673-7598.2023.02.002 |
YAN Q Y, LIU D, LI J M,et al .Economic dispatching of wind power-PV-carbon capture-P2G virtual power plant based on scenario generating and IGDT[J].Smart Power,2023,51(2):1-7. doi:10.3969/j.issn.1673-7598.2023.02.002 | |
29 | 严岩,苏宏升,车玉龙 .基于改进LHS的含风电电力系统概率潮流计算[J].太阳能学报,2018,39(4):1111-1118. |
YAN Y, SU H S, CHE Y L .Probabilistic power flow calculation of power system considering wind power based on improved LHS[J].Acta Energiae Solaris Sinica,2018,39(4):1111-1118. | |
30 | 赵振宇,刘夏 .计及需求响应的园区电热综合能源系统灵活性资源优化配置[J/OL].现代电力.. |
ZHAO Z Y, LIU X .Optimal allocation of flexible resources in the park's electric heating comprehensive energy system considering demand response [J/OL] Modern electricity . | |
31 | 马溪原 .含风电电力系统的场景分析方法及其在随机优化中的应用[D].武汉:武汉大学,2014. |
MA X Y .Scenario analysis method of power system with wind power and its application in stochastic optimization[D].Wuhan:Wuhan University,2014. | |
32 | 于松源,张峻松,元志伟,等 .计及热惯性的热电联产虚拟电厂韧性提升策略[J].发电技术,2023,44(6):758-768. |
YU S Y, ZHANG J S, YUAN Z W,et al .Resilience enhancement strategy of combined heat and power-virtual power plant considering thermal inertia[J].Power Generation Technology,2023,44(6):758-768. | |
33 | MEHDIZADEH A, TAGHIZADEGAN N, SALEHI J .Risk-based energy management of renewable-based microgrid using information gap decision theory in the presence of peak load management[J].Applied Energy,2018,211:617-630. doi:10.1016/j.apenergy.2017.11.084 |
34 | 李东东,张凯,姚寅,等 .基于信息间隙决策理论的电动汽车聚合商日前需求响应调度策略[J].电力系统保护与控制,2022,50(24):101-111. |
LI D D, ZHANG K, YAO Y,et al .Day-ahead demand response scheduling strategy of an electric vehicle aggregator based on information gap decision theory[J].Power System Protection and Control,2022,50(24):101-111. | |
35 | 卫志农,张思德,孙国强,等 .基于碳交易机制的电-气互联综合能源系统低碳经济运行[J].电力系统自动化,2016,40(15):9-16. |
WEI Z N, ZHANG S D, SUN G Q,et al .Carbon trading based low-carbon economic operation for integrated electricity and natural gas energy system[J].Automation of Electric Power Systems,2016,40(15):9-16. | |
36 | 陈锦鹏,胡志坚,陈颖光,等 .考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J].电力自动化设备,2021,41(9):48-55. |
CHEN J P, HU Z J, CHEN Y G,et al .Thermoelectric optimization of integrated energy system considering ladder-type carbon trading mechanism and electric hydrogen production[J].Electric Power Automation Equipment,2021,41(9):48-55. | |
37 | 骆钊,刘德文,贾芸睿,等 .考虑绿色氢能证书和水电制氢的综合能源系统优化运行[J].电网技术,2024,48(4):1445-1454. |
LUO Z, LIU D W, JIA Y R,et al .Optimal operation of integrated energy system considering green hydrogen certificate and hydrogen production by hydropower[J].Power System Technology,2024,48(4):1445-1454,I0017-I0021. | |
38 | 钱朝飞 .含风电制氢及多储能的综合能源系统优化调度与碳排放分析[D].南宁:广西大学,2021. |
QIAN C)F .Optimal scheduling and carbon emission analysis of integrated energy system with hydrogen production from wind power and multi-energy storage[D].Nanning:Guangxi University,2021. | |
39 | 陈志,胡志坚,翁菖宏,等 .基于阶梯碳交易机制的园区综合能源系统多阶段规划[J].电力自动化设备,2021,41(9):148-155. |
CHEN Z, HU Z J, WENG C H,et al .Multi-stage planning of park-level integrated energy system based on ladder-type carbon trading mechanism[J].Electric Power Automation Equipment,2021,41(9):148-155. | |
40 | 刘晓军,聂凡杰,杨冬锋,等 .碳捕集电厂-电转气联合运行模式下考虑绿证-碳交易机制的综合能源系统低碳经济调度[J].电网技术,2023,47(6):2207-2222. |
LIU X J, NIE F J, YANG D F,et al .Low carbon economic dispatch of a comprehensive energy system considering green certification carbon trading mechanism under the combined operation mode of carbon capture power plants and electricity to gas conversion[J]. Grid Technology,2023,47(6):2207-2222. |
[1] | 胡程平, 范明, 刘艾旺, 施云辉. 考虑云储能的多区互联综合能源系统规划[J]. 发电技术, 2024, 45(4): 641-650. |
[2] | 赵振宇, 李炘薪. 基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J]. 发电技术, 2023, 44(6): 769-780. |
[3] | 亢猛, 钟祎勍, 石鑫, 温港成, 房方. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术, 2023, 44(1): 25-35. |
[4] | 黄彦彰, 周宇昊, 郑文广, 王明晓. 产业园区新型多能联供综合能源服务研究[J]. 发电技术, 2021, 42(6): 734-740. |
[5] | 屈鲁,欧阳斌,袁志昌,张树卿,曾嵘. 综合能源系统中热力子系统的稳态特性分析[J]. 发电技术, 2020, 41(3): 237-244. |
[6] | 蒋猛,黄宇,廖伟涵,张简炼,张又文,郭创新. 基于改进NSGA-Ⅱ算法的电-气-热综合能源系统多目标优化[J]. 发电技术, 2020, 41(2): 131-136. |
[7] | 施云辉,郭创新,丁筱. 基于仿射可调鲁棒优化的园区综合能源系统经济调度[J]. 发电技术, 2020, 41(2): 118-125. |
[8] | 施云辉,郭创新. 考虑运行风险的含储能综合能源系统优化调度[J]. 发电技术, 2020, 41(1): 56-63. |
[9] | 刘敦楠,张婷婷,李华,齐彩娟,马艳霞,张玮琪,许小峰. 面向泛在电力物联网的综合能源系统规划模型[J]. 发电技术, 2020, 41(1): 50-55. |
[10] | 李姚旺,苗世洪,尹斌鑫,张世旭,张松岩. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术, 2020, 41(1): 41-49. |
[11] | 张尔佳,邰能灵,陈旸,姚伟,黄文焘,赵时桦. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术, 2020, 41(1): 30-40. |
[12] | 欧阳斌,袁志昌,陆超,屈鲁,李东东. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41(1): 19-29. |
[13] | 胡伟,戚宇辰,张鸿轩,董凌,李延和. 风光水多能源电力系统互补智能优化运行策略[J]. 发电技术, 2020, 41(1): 9-18. |
[14] | 郭创新, 丁筱. 综合能源系统优化运行研究现状及展望[J]. 发电技术, 2020, 41(1): 2-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||