发电技术 ›› 2024, Vol. 45 ›› Issue (4): 641-650.DOI: 10.12096/j.2096-4528.pgt.23057
胡程平1, 范明1, 刘艾旺2, 施云辉3
收稿日期:
2023-11-04
修回日期:
2024-02-14
出版日期:
2024-08-31
发布日期:
2024-08-27
通讯作者:
施云辉
作者简介:
基金资助:
Chengping HU1, Ming FAN1, Aiwang LIU2, Yunhui SHI3
Received:
2023-11-04
Revised:
2024-02-14
Published:
2024-08-31
Online:
2024-08-27
Contact:
Yunhui SHI
Supported by:
摘要:
目的 为促进储能和用户侧资源高效利用,提高清洁能源消纳水平,提出了一种考虑云储能的多区互联综合能源系统规划模型。 方法 在建立区域综合能源系统能源枢纽的基础上,提出了考虑电/热/气云储能的能源枢纽模型。针对云储能与综合能源系统分属不同投资主体的问题,考虑云储能投资回报年限约束,提出了双主体两阶段规划模型:第一阶段对网架、设备容量以及云储能使用价格进行规划;第二阶段对综合能源系统的运行策略进行优化。针对多能流网架规划复杂度高的问题,提出了基于最小生成树的预筛选算法。 结果 对某三园区综合能源系统规划的算例分析结果表明,所提模型有助于提高能效、降低碳排、提高互连综合能源系统的经济效益。 结论 研究成果揭示了云储能与多区域综合能源系统协同规划的潜力,并为多类型储能在能源领域的深度应用和商业推广提供参考。
中图分类号:
胡程平, 范明, 刘艾旺, 施云辉. 考虑云储能的多区互联综合能源系统规划[J]. 发电技术, 2024, 45(4): 641-650.
Chengping HU, Ming FAN, Aiwang LIU, Yunhui SHI. Multi-Area Interconnected Integrated Energy System Planning Considering Cloud Energy Storage[J]. Power Generation Technology, 2024, 45(4): 641-650.
设备 | 建设成本 | 运维成本 | 可安装园区 |
---|---|---|---|
垃圾填埋场 | 6.14元/(t⋅d) | 0.84元/(t⋅d) | 1 |
生物质电厂 | 4 000元/kW | 2.16元/kW | 1 |
P2G | 7 527元/kW | 1.19元/kW | 1, 2 |
风机 | 8 050元/kW | 0.01元/kW | 1 |
光伏 | 7 808元/kW | 0.01元/kW | 2, 3 |
燃气轮机 | 4 000元/kW | 2.21元/kW | 2 |
燃气锅炉 | 303元/kW | 0.006 5元/kW | 2 |
热泵 | 1 180元/kW | 0.01元/kW | 2, 3 |
电制冷 | 983元/kW | 0.01元/kW | 2, 3 |
电储能 | 142.86元/(kW⋅h) | 0.000 27元/(kW⋅h) | 1, 2, 3 |
储热 | 600元/(kW⋅h) | 0.000 2元/(kW⋅h) | 1, 2, 3 |
储气 | 256元/m3 | 0.000 2元/m3 | 1, 2, 3 |
表1 规划设备经济性参数
Tab. 1 Economic parameters of planning device
设备 | 建设成本 | 运维成本 | 可安装园区 |
---|---|---|---|
垃圾填埋场 | 6.14元/(t⋅d) | 0.84元/(t⋅d) | 1 |
生物质电厂 | 4 000元/kW | 2.16元/kW | 1 |
P2G | 7 527元/kW | 1.19元/kW | 1, 2 |
风机 | 8 050元/kW | 0.01元/kW | 1 |
光伏 | 7 808元/kW | 0.01元/kW | 2, 3 |
燃气轮机 | 4 000元/kW | 2.21元/kW | 2 |
燃气锅炉 | 303元/kW | 0.006 5元/kW | 2 |
热泵 | 1 180元/kW | 0.01元/kW | 2, 3 |
电制冷 | 983元/kW | 0.01元/kW | 2, 3 |
电储能 | 142.86元/(kW⋅h) | 0.000 27元/(kW⋅h) | 1, 2, 3 |
储热 | 600元/(kW⋅h) | 0.000 2元/(kW⋅h) | 1, 2, 3 |
储气 | 256元/m3 | 0.000 2元/m3 | 1, 2, 3 |
规划设备 | 设计容量 | ||
---|---|---|---|
园区1 | 园区2 | 园区3 | |
垃圾填埋场 | 1 685 t/d | — | — |
生物质电厂 | 4.3 MW | — | — |
风机 | 20 MW | — | — |
光伏 | — | 5 MW | — |
P2G | 5 MW | 500 kW | — |
燃气轮机 | — | — | — |
燃气锅炉 | — | 16 MW | — |
热泵 | — | — | 345 kW |
电制冷 | — | 4.8 MW | 250 kW |
电储能 | — | 4.5 MW⋅h | — |
储热 | — | 6.6 MW⋅h | 3.5MW⋅h |
储气 | — | 5.8万m³ | — |
表2 规划后各设备选址和设计容量
Tab. 2 Location and design capacity of devices after planning
规划设备 | 设计容量 | ||
---|---|---|---|
园区1 | 园区2 | 园区3 | |
垃圾填埋场 | 1 685 t/d | — | — |
生物质电厂 | 4.3 MW | — | — |
风机 | 20 MW | — | — |
光伏 | — | 5 MW | — |
P2G | 5 MW | 500 kW | — |
燃气轮机 | — | — | — |
燃气锅炉 | — | 16 MW | — |
热泵 | — | — | 345 kW |
电制冷 | — | 4.8 MW | 250 kW |
电储能 | — | 4.5 MW⋅h | — |
储热 | — | 6.6 MW⋅h | 3.5MW⋅h |
储气 | — | 5.8万m³ | — |
EH | EH1 | EH2 | EH3 |
---|---|---|---|
EH1 | — | (1, 1, 1) | (1, 0, 0) |
EH2 | (1, 1, 1) | — | (0, 0, 0) |
EH3 | (1, 0, 0) | (0, 0, 0) | — |
表3 规划后能量传输路径
Tab. 3 Energy paths after planning
EH | EH1 | EH2 | EH3 |
---|---|---|---|
EH1 | — | (1, 1, 1) | (1, 0, 0) |
EH2 | (1, 1, 1) | — | (0, 0, 0) |
EH3 | (1, 0, 0) | (0, 0, 0) | — |
园区 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | ||
---|---|---|---|---|---|
建设 | 运维 | 购能 | |||
1 | 54 685 | 2 243 | 0 | 15 950 | 463.78 |
2 | 9 211 | 390 | 41 334 | 0 | 726.03 |
3 | 4 789 | 173 | 7 286 | 0 | 51.10 |
表4 独立规划结果
Tab. 4 Results of independent planning
园区 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | ||
---|---|---|---|---|---|
建设 | 运维 | 购能 | |||
1 | 54 685 | 2 243 | 0 | 15 950 | 463.78 |
2 | 9 211 | 390 | 41 334 | 0 | 726.03 |
3 | 4 789 | 173 | 7 286 | 0 | 51.10 |
园区 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | ||
---|---|---|---|---|---|
建设 | 运维 | 购能 | |||
1 | 56 167 | 2 413 | 0 | 1 218 | 357.11 |
2 | 10 134 | 367 | 170 | 0 | 559.04 |
3 | 4 432 | 166 | 0 | 0 | 39.34 |
表5 联合规划结果
Tab. 5 Results of coordinated planning
园区 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | ||
---|---|---|---|---|---|
建设 | 运维 | 购能 | |||
1 | 56 167 | 2 413 | 0 | 1 218 | 357.11 |
2 | 10 134 | 367 | 170 | 0 | 559.04 |
3 | 4 432 | 166 | 0 | 0 | 39.34 |
是否购买云储能 | 储电量/(MW⋅h) | 储热量/(MW⋅h) | 储气量/万m3 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | |||
---|---|---|---|---|---|---|---|---|---|
建设 | 运维 | 服务 | 购能 | ||||||
是 | 4.5 | 10.1 | 5.8 | 70 733 | 2 946 | 64 | 170 | 1 218 | 955.5 |
否 | 6.5 | 14.3 | 7.4 | 71 368 | 2 954 | 0 | 175 | 1 226 | 951.3 |
表6 云储能服务对联合规划结果的影响
Tab. 6 Impact of cloud storage service on coordinated planning results
是否购买云储能 | 储电量/(MW⋅h) | 储热量/(MW⋅h) | 储气量/万m3 | 成本/万元 | 售能收益/万元 | 碳排放/(t/d) | |||
---|---|---|---|---|---|---|---|---|---|
建设 | 运维 | 服务 | 购能 | ||||||
是 | 4.5 | 10.1 | 5.8 | 70 733 | 2 946 | 64 | 170 | 1 218 | 955.5 |
否 | 6.5 | 14.3 | 7.4 | 71 368 | 2 954 | 0 | 175 | 1 226 | 951.3 |
1 | 黄彦彰,周宇昊,郑文广,等 .产业园区新型多能联供综合能源服务研究[J].发电技术,2021,42(6):734-740. doi:10.12096/j.2096-4528.pgt.21099 |
HUANG Y Z, ZHOU Y H, ZHENG W G,et al .Research on new integrated energy system with multi-power combined supply of industrial parks[J].Power Generation Technology,2021,42(6):734-740. doi:10.12096/j.2096-4528.pgt.21099 | |
2 | 贺文,陈珍萍,胡伏原,等 .基于一致性的综合能源系统低碳经济调度[J].电力系统保护与控制,2023,51(19):42-53. |
HE W, CHEN Z P, HU F Y,et al .Consensus-based low-carbon economic dispatching of integrated energy systems[J].Power System Protection and Control,2023,51(19):42-53. | |
3 | 宁毕武,张冠锋,王海鑫,等 .考虑梯次利用储能系统安全阈值的综合能源系统低碳经济调度方法[J].电力建设,2023,44(6):1-11. |
NING B W, ZHANG G F, WANG H X,et al .A low-carbon economic dispatch method for IES considering the safety threshold of echelon utilization energy storage system[J].Electric Power Construction,2023,44(6):1-11. | |
4 | 周任军,吴燕榕,潘轩,等 .考虑电热需求响应的区域综合能源系统储能容量优化配置[J].电力科学与技术学报,2023,38(1):11-17. |
ZHOU R J, WU Y R, PAN X,et al .Optimal placement of energy storage in a regional integrated energy system considering electric and thermal demand responses[J].Journal of Electric Power Science and Technology,2023,38(1):11-17. | |
5 | 江训谱,吕施霖,王健,等 .考虑阶梯碳交易和最优建设时序的园区综合能源系统规划[J].电测与仪表,2023,60(12):11-19. |
JIANG X P, LÜ S L, WANG J,et al .Park-level integrated energy system planning considering tiered carbon trading and optimal construction timing[J].Electrical Measurement & Instrumentation,2023,60(12):11-19. | |
6 | 程杉,陈诺,徐建宇,等 .考虑综合需求响应的楼宇综合能源系统能量管理优化[J].电力工程技术,2023,42(2):40-47. |
CHENG S, CHEN N, XU J Y,et al .Optimal energy management of residential integrated energy system with consideration of integrated demand response[J].Electric Power Engineering Technology,2023,42(2):40-47. | |
7 | 吴聪,唐巍,白牧可,等 .基于能源路由器的用户侧能源互联网规划[J].电力系统自动化,2017,41(4):20-28. |
WU C, TANG W, BAI M K,et al .Energy router based planning of energy Internet at user side[J].Automation of Electric Power Systems,2017,41(4):20-28. | |
8 | XU X, JIN X, JIA H,et al .Hierarchical management for integrated community energy systems[J].Applied Energy,2015,160:231-243. doi:10.1016/j.apenergy.2015.08.134 |
9 | WANG K, LIU X, ZHAO L,et al .Research on structure and energy management strategy of household energy router based on hybrid energy storage[C]//2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT).Washington,DC,USA:IEEE,2019:1-5. doi:10.1109/isgt.2019.8791644 |
10 | 权超,董晓峰,姜彤 .基于CCHP耦合的电力、天然气区域综合能源系统优化规划[J].电网技术,2018,42(8):2456-2466. |
QUAN C, DONG X F, JIANG T .Optimization planning of integrated electricity-gas community energy system based on coupled CCHP[J].Power System Technology,2018,42(8):2456-2466. | |
11 | 李畸勇,赵新哲,郑一飞,等 .基于纳什谈判考虑能源共享的区域综合能源系统优化配置[J].电力系统保护与控制,2023,51(5):22-32. |
LI J Y, ZHAO X Z, ZHENG Y F,et al .Optimal configuration of a regional integrated energy system considering energy sharing based on Nash negotiation[J].Power System Protection and Control,2023,51(5):22-32. | |
12 | 张明光,王文婷,陈大为 .基于合作博弈的多区域综合能源系统优化调度[J].智慧电力,2022,50(10):102-108. |
ZHANG M G, WANG W T, CHEN D W .Optimal dispatching of multi-regional integrated energy system based on cooperative game[J].Smart Power,2022,50(10):102-108. | |
13 | 范宏,鲁家阳,陆骁霄 .考虑激励型需求响应的多区域综合能源系统协同规划[J].电测与仪表,2023,60(9):117-124. |
FAN H, LU J Y, LU X X .Coordinated planning of multi-region integrated energy system considering incentive demand response[J].Electrical Measurement & Instrumentation,2023,60(9):117-124. | |
14 | ZHANG N, HU Z .A novel power system source-grid-load coordinated planning model considering both efficiency power plant and demand response[C]//2018 IEEE International Conference on Energy Internet (ICEI).Beijing,China:IEEE,2018:66-71. doi:10.1109/icei.2018.00020 |
15 | ZHU Y, ZHAO N, ZHANG S,et al .Research on modes of energy utilization in regional energy Internet[C]//2018 IEEE International Conference on Energy Internet (ICEI).Beijing,China:IEEE,2018:38-42. doi:10.1109/icei.2018.00015 |
16 | CHEN Y, ZHANG L, CHEN A,et al .Multi-energy network model of virtual energy router[J].E3S Web of Conferences,2019,118:02052. doi:10.1051/e3sconf/201911802052 |
17 | 蒋明喆,成贵学,赵晋斌 .考虑动态荷储策略的综合能源系统双层规划模型[J].电力科学与技术学报,2022,37(5):44-57. |
JIANG M Z, CHENG G X, ZHAO J B .Double-deck planning model of integrated energy system in consideration of dynamic load energy storage strategy[J].Journal of Electric Power Science and Technology,2022,37(5):44-57. | |
18 | 赵晶晶,应伦杰,屈靖雅 .多区域含冷热电联供和储能的综合能源系统运行优化[J].电测与仪表,2022,59(10):16-22. |
ZHAO J J, YING L J, QU J Y .Operation optimization of multi-region integrated energy system including cool-heat-electricity cogeneration and energy storage equipment[J].Electrical Measurement & Instrumentation,2022,59(10):16-22. | |
19 | 郭明萱,穆云飞,肖迁,等 .考虑电池寿命损耗的园区综合能源电/热混合储能优化配置[J].电力系统自动化,2021,45(13):66-75. |
GUO M X, MU Y F, XIAO Q,et al .Optimal configuration of electric/thermal hybrid energy storage for park-level integrated energy system considering battery life loss[J].Automation of Electric Power Systems,2021,45(13):66-75. | |
20 | 许周,孙永辉,谢东亮,等 .计及电/热柔性负荷的区域综合能源系统储能优化配置[J].电力系统自动化,2020,44(2):53-59. |
XU Z, SUN Y H, XIE D L,et al .Optimal configuration of energy storage for integrated region energy system considering power/thermal flexible load[J].Automation of Electric Power Systems,2020,44(2):53-59. | |
21 | 霍龙,张誉宝,陈欣 .人工智能在分布式储能技术中的应用[J].发电技术,2022,43(5):707-717. doi:10.12096/j.2096-4528.pgt.22109 |
HUO L, ZHANG Y B, CHEN X .Artificial intelligence applications in distributed energy storage technologies[J].Power Generation Technology,2022,43(5):707-717. doi:10.12096/j.2096-4528.pgt.22109 | |
22 | 徐文滨,孙一凡,王林,等 .区块链架构下考虑共享储能的用户需求响应[J].浙江电力,2023,42(4):54-64. |
XU W B, SUN Y F, WANG L,et al .Demand response of users considering shared energy storage under blockchain architecture[J].Zhejiang Electric Power,2023,42(4):54-64. | |
23 | 王苗苗,李华强,何永祥 .考虑多主体电能交易的云储能服务机制[J].电力建设,2022,43(11):73-84. |
WANG M M, LI H Q, HE Y X .Cloud energy storage service mechanism considering multi-agent power transaction[J].Electric Power Construction,2022,43(11):73-84. | |
24 | LIU J, ZHANG N, KANG C,et al .Cloud energy storage for residential and small commercial consumers:a business case study[J].Applied Energy,2017,188:226-236. doi:10.1016/j.apenergy.2016.11.120 |
25 | 刘静琨,张宁,康重庆 .电力系统云储能研究框架与基础模型[J].中国电机工程学报,2017,37(12):3361-3371. |
LIU J K, ZHANG N, KANG C Q .Research framework and basic models for cloud energy storage in power system[J].Proceedings of the CSEE,2017,37(12):3361-3371. | |
26 | 郝木凯,张伟,董青卫,等 .复杂因素下的多用户共享储能系统优化[J].信息与控制,2020,49(2):242-248. |
HAO M K, ZHANG W, DONG Q W,et al .Optimization of multi-user shared energy storage system considering complex factors[J].Information and Control,2020,49(2):242-248. | |
27 | 匡熠,王秀丽,王建学,等 .基于stackelberg博弈的虚拟电厂能源共享机制[J].电网技术,2020,44(12):4556-4564. |
KUANG Y, WANG X L, WANG J X,et al .Virtual power plant energy sharing mechanism based on stackelberg game[J].Power System Technology,2020,44(12):4556-4564. | |
28 | 孙偲,陈来军,邱欣杰,等 .基于合作博弈的发电侧共享储能规划模型[J].全球能源互联网,2019,2(4):360-366. |
SUN C, CHEN L J, QIU X J,et al .A generation-side shared energy storage planning model based on cooperative game[J].Journal of Global Energy Interconnection,2019,2(4):360-366. | |
29 | SOUISSI O, BENATITALLAH R, DUVIVIER D,et al .Path planning:a 2013 survey[C]//Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM).Agdal,Morocco:IEEE,2013:1-8. |
[1] | 赵振宇, 包格日乐图, 李炘薪. 基于信息间隙决策理论的含碳捕集-电转气综合能源系统优化调度[J]. 发电技术, 2024, 45(4): 651-665. |
[2] | 钟永洁, 纪陵, 李靖霞, 左建勋, 王紫东, 吴世伟. 虚拟电厂智慧运营管控平台系统框架与综合功能[J]. 发电技术, 2023, 44(5): 656-666. |
[3] | 亢猛, 钟祎勍, 石鑫, 温港成, 房方. 计及负荷供给可靠性的园区综合能源系统两阶段优化方法研究[J]. 发电技术, 2023, 44(1): 25-35. |
[4] | 黄彦彰, 周宇昊, 郑文广, 王明晓. 产业园区新型多能联供综合能源服务研究[J]. 发电技术, 2021, 42(6): 734-740. |
[5] | 申洪, 周勤勇, 刘耀, 孙蔚, 贺庆, 任大伟, 张彦涛. 碳中和背景下全球能源互联网构建的关键技术及展望[J]. 发电技术, 2021, 42(1): 8-19. |
[6] | 叶季蕾, 李斌, 张宇, 李明哲, 石博文, 王皓靖. 基于全球能源互联网典型特征的储能需求及配置分析[J]. 发电技术, 2021, 42(1): 20-30. |
[7] | 杨湛晔,王佳楠,张虎润. “互联网+”智慧能源储能系统主动调控策略研究[J]. 发电技术, 2020, 41(3): 281-287. |
[8] | 屈鲁,欧阳斌,袁志昌,张树卿,曾嵘. 综合能源系统中热力子系统的稳态特性分析[J]. 发电技术, 2020, 41(3): 237-244. |
[9] | 蒋猛,黄宇,廖伟涵,张简炼,张又文,郭创新. 基于改进NSGA-Ⅱ算法的电-气-热综合能源系统多目标优化[J]. 发电技术, 2020, 41(2): 131-136. |
[10] | 施云辉,郭创新,丁筱. 基于仿射可调鲁棒优化的园区综合能源系统经济调度[J]. 发电技术, 2020, 41(2): 118-125. |
[11] | 肖白,周文凯,姜卓,綦雪松,牛湘智. 泛在电力物联网研究现状分析[J]. 发电技术, 2020, 41(1): 88-93. |
[12] | 施云辉,郭创新. 考虑运行风险的含储能综合能源系统优化调度[J]. 发电技术, 2020, 41(1): 56-63. |
[13] | 刘敦楠,张婷婷,李华,齐彩娟,马艳霞,张玮琪,许小峰. 面向泛在电力物联网的综合能源系统规划模型[J]. 发电技术, 2020, 41(1): 50-55. |
[14] | 李姚旺,苗世洪,尹斌鑫,张世旭,张松岩. 计及先进绝热压缩空气储能多能联供特性的微型综合能源系统优化调度模型[J]. 发电技术, 2020, 41(1): 41-49. |
[15] | 张尔佳,邰能灵,陈旸,姚伟,黄文焘,赵时桦. 基于虚拟储能的综合能源系统分布式电源功率波动平抑策略[J]. 发电技术, 2020, 41(1): 30-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||