发电技术

• •    下一篇

锂离子电池结合棋盘拓扑分流结构的浸没冷却热管理研究

刘倩,石千磊,李凯璇,徐超,廖志荣,巨星   

  1. 电站能量传递转化与系统教育部重点实验室(华北电力大学)

Research on Immersion Cooling Thermal Management of Lithium Ion Battery Combined with Checkerboard Topology Diversion Structure

LIU Qian, SHI Qianlei, LI Kaixuan, XU Chao, LIAO Zhirong, JU Xing   

  1. Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education (North China Electric Power University), Beijing 102206, China

摘要: 针对动力电池热管理的问题,对18650圆柱型锂离子电池阵列的新型液冷结构及其冷却效果展开研究。提出棋盘拓扑分流结构的浸没式冷却方法,结合锂离子电池自身形状和阵列排布的特点,形成简单合理、基于电池阵列本体的浸没式冷却拓扑结构。在此新型冷却结构的设计下,进一步建立电池阵列的单体模型和模组模型,通过数值模拟方法对单体和模组模型在各个时刻的温度分布情况进行分析,验证了以单体模型代替模组模型的可行性。在确保单体模型计算准确性的基础上,对冷却液流道的出入口布置进行数值模拟,结果表明:流道出入口同侧布置与异侧布置具有几乎相同的出入口压降,但流道出入口同侧布置的冷却效果优于异侧布置,且随着电池生热量的增大和生热时间的增加,同侧出入口布置的优势更加明显。

关键词: 锂离子电池, 热管理, 歧管, 浸没冷却, 数值模拟

Abstract: In view of the thermal management of power batteries, the new liquid-cooling structure of 18650 cylindrical lithium-ion battery array and its cooling effect were studied. An immersion cooling method combined with a checkerboard topology shunt structure was proposed. And by combining the shape and array arrangement of the lithium-ion battery, a simple and reasonable immersion cooling topology based on the battery array was formed. Under this new cooling structure, the single model and module model of the battery array were established. Through the numerical simulation, the temperature distribution of the single and module models at every moment was analyzed, and the feasibility of replacing the module model with the single one was verified. On the basis of ensuring the calculation accuracy of the single model, numerical simulations on the layout of the inlet and outlet of the cooling channel were carried out. The results show that the same-side arrangement and the different-side one are almost the same in the pressure drop, but the same-side arrangement is superior to the different-side arrangement in terms of cooling effect. Moreover, with the increase of the heat generation of the battery and the extension of the heating time, the advantages of the arrangement of the inlets and outlets on the same side are more obvious.

Key words: lithium-ion battery, thermal management, manifold, immersion cooling, numerical simulation