发电技术 ›› 2025, Vol. 46 ›› Issue (5): 968-976.DOI: 10.12096/j.2096-4528.pgt.24201
范巍瀚1, 滕青芳1, 降志文1, 郑智杰1, 钟晴1, 马喜平2
收稿日期:2024-09-09
修回日期:2024-10-18
出版日期:2025-10-31
发布日期:2025-10-23
作者简介:基金资助:Weihan FAN1, Qingfang TENG1, Zhiwen JIANG1, Zhijie ZHENG1, Qing ZHONG1, Xiping MA2
Received:2024-09-09
Revised:2024-10-18
Published:2025-10-31
Online:2025-10-23
Supported by:摘要:
目的 为提高交流电力弹簧(AC electric spring,ACES)在负载投切和网侧电压波动场景下稳定关键性负载(critical load,CL)电压的能力,提出一种模型预测电流控制(model predictive current control,MPCC)策略。 方法 首先,针对可变负载工况,将关键性负载电流参考模型搭建为下一时刻关键性负载参考电压与当前时刻关键性负载等效阻抗值之比,通过可变的关键性负载电流参考值,提高了负载投切时ACES的动态响应能力。其次,针对关键性负载电压波动,控制策略通过ACES工作在不同的模式,使得关键性负载电流预测值追踪变化的电流参考值,从而使关键性负载电压追踪给定值。 结果 所提控制策略在负载投切和网侧电压波动的工况下,将关键性负载电压波动抑制在0.45%以内的同时兼顾了非关键性负载的电能质量,并且关键性负载电压的畸变率被控制在0.6%以下。 结论 该控制策略有效地提高了电力弹簧抑制负载电压波动的能力,为电力弹簧并入电网的工作提供了参考。
中图分类号:
范巍瀚, 滕青芳, 降志文, 郑智杰, 钟晴, 马喜平. 基于模型预测的交流电力弹簧电流控制策略研究[J]. 发电技术, 2025, 46(5): 968-976.
Weihan FAN, Qingfang TENG, Zhiwen JIANG, Zhijie ZHENG, Qing ZHONG, Xiping MA. Research on Model Predictive Current Control Strategy for AC Electric Springs[J]. Power Generation Technology, 2025, 46(5): 968-976.
| 物理量 | 单位 |
|---|---|
| 初始网侧电源 | V |
| 传输线路电阻RL | Ω |
| 传输线路电感LL | mH |
| 非关键性负载ZNCL_n | Ω |
| 关键性负载ZCL_n | Ω |
| ACES直流侧电压VDC | V |
| ACES滤波电感Lf | mH |
| ACES滤波电容Cf | mF |
| 传输线电流 | A |
| 非关键性负载电流 | A |
| 关键性负载电流 | A |
| 半桥逆变电路电容 | F |
| 逆变电路交流侧输出电压 | V |
| 逆变电路交流侧输出电流 | A |
| ACES输出电压 | V |
| 非关键性负载电压 | V |
| 关键性负载电压 | V |
表1 物理量及单位
Tab. 1 Physical quantities and units
| 物理量 | 单位 |
|---|---|
| 初始网侧电源 | V |
| 传输线路电阻RL | Ω |
| 传输线路电感LL | mH |
| 非关键性负载ZNCL_n | Ω |
| 关键性负载ZCL_n | Ω |
| ACES直流侧电压VDC | V |
| ACES滤波电感Lf | mH |
| ACES滤波电容Cf | mF |
| 传输线电流 | A |
| 非关键性负载电流 | A |
| 关键性负载电流 | A |
| 半桥逆变电路电容 | F |
| 逆变电路交流侧输出电压 | V |
| 逆变电路交流侧输出电流 | A |
| ACES输出电压 | V |
| 非关键性负载电压 | V |
| 关键性负载电压 | V |
| 参数 | 数值 |
|---|---|
| 初始网侧电源 | 313 |
| 传输线路电阻RL/Ω | 0.1 |
| 传输线路电感LL/mH | 1.22 |
| 非关键性负载 | 30+j10 |
| 非关键性负载 | 30+j10 |
| 关键性负载 | 50+j10 |
| 关键性负载 | 50+j10 |
| ACES直流侧电压VDC/V | 400 |
| ACES滤波电感Lf/mH | 4 |
| ACES滤波电容Cf/mF | 0.75 |
| 采样周期TS/s | 10-4 |
| 参考电压有效值VCL_refRMS/V | 220 |
表2 仿真参数
Tab. 2 Simulation parameters
| 参数 | 数值 |
|---|---|
| 初始网侧电源 | 313 |
| 传输线路电阻RL/Ω | 0.1 |
| 传输线路电感LL/mH | 1.22 |
| 非关键性负载 | 30+j10 |
| 非关键性负载 | 30+j10 |
| 关键性负载 | 50+j10 |
| 关键性负载 | 50+j10 |
| ACES直流侧电压VDC/V | 400 |
| ACES滤波电感Lf/mH | 4 |
| ACES滤波电容Cf/mF | 0.75 |
| 采样周期TS/s | 10-4 |
| 参考电压有效值VCL_refRMS/V | 220 |
| [1] | 尹发根,王淳 .电力弹簧研究进展:原理、拓扑结构、控制和应用[J].电网技术,2019,43(1):174-184. |
| YIN F G, WANG C .Review of electric spring:principle,topologies,control and applications[J].Power System Technology,2019,43(1):174-184. | |
| [2] | 刘畅,卓建坤,赵东明,等 .利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J].中国电机工程学报,2020,40(1):1-18. |
| LIU C, ZHUO J K, ZHAO D M,et al .A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J].Proceedings of the Chinese Society of Electrical Engineering,2020,40(1):1-18. | |
| [3] | 袁志昌,郭佩乾,刘国伟,等 .新能源经柔性直流接入电网的控制与保护综述[J].高电压技术,2020,46(5):1460-1475. |
| YUAN Z C, GUO P Q, LIU G W,et al .Review on control and protection for renewable energy integration through VSC-HVDC[J].High Voltage Engineering,2020,46(5):1460-1475. | |
| [4] | 张琳,谢洪途,赵路路,等 .混合能源直流微电网能源优化管控策略研究[J].电力系统保护与控制,2024,52(3):141-151. |
| ZHANG L, XIE H T, ZHAO L L,et al .Energy optimization and control strategy for a hybrid energy DC microgrid[J].Power System Protection and Control,2024,52(3):141-151. | |
| [5] | 兰月,王俊芳,窦宇宇,等 .一种抑制风电送出直流MMC内部振荡的零序电流控制策略研究[J].电力科学与技术学报,2024,39(1):234-242. |
| LAN Y, WANG J F, DOU Y Y,et al .Research on zero sequence current control strategy for suppressing internal oscillation of DC MMC send by wind power[J].Journal of Electric Power Science and Technology,2024,39(1):234-242. | |
| [6] | 袁松,葛昭,唐佳杰,等 .基于复合序电流特征的构网型新能源外送线路纵联保护[J].中国电力,2025,58(8):185-192. |
| YUAN S, GE Z, TANG J J,et al .Longitudinal protection of grid-Forming new energy outgoing lines based on composite sequence current characteristics[J].Electric Power,2025,58(8):185-192. | |
| [7] | 王伟杰,曾鑫洁,徐远途,等 .基于正序突变量相轨迹辨识的可再生能源配电网电流保护[J].发电技术,2024,45(4):753-764. |
| WANG W J, ZENG X J, XU Y T,et al .Renewable energy distribution network overcurrent protection based on positive-sequence sudden-change component locus identification[J].Power Generation Technology,2024,45(4):753-764. | |
| [8] | HUI S Y, LEE C K, WU F F .Electric springs:a new smart grid technology[J].IEEE Transactions on Smart Grid,2012,3(3):1552-1561. doi:10.1109/tsg.2012.2200701 |
| [9] | YAN S, LEE C K, YANG T,et al .Extending the operating range of electric spring using back-to-back converter:hardware implementation and control[J].IEEE Transactions on Power Electronics,2017,32(7):5171-5179. doi:10.1109/tpel.2016.2606128 |
| [10] | ZHENG Y, HILL D J, MENG K,et al .Critical bus voltage support in distribution systems with electric springs and responsibility sharing[J].IEEE Transactions on Power Systems,2017,32(5):3584-3593. doi:10.1109/tpwrs.2016.2645940 |
| [11] | 程启明,沈章平,张家领,等 .基于MAS的多电力弹簧分布式协同控制策略[J].电力自动化设备,2024,44(1):111-118. |
| CHENG Q M, SHEN Z P, ZHANG J L,et al .Multi-electric spring distributed collaborative control strategy based on MAS[J].Electric Power Automation Equipment,2024,44(1):111-118. | |
| [12] | YAN S, TAN S C, LEE C K,et al .Electric springs for reducing power imbalance in three-phase power systems[J].IEEE Transactions on Power Electronics,2015,30(7):3601-3609. doi:10.1109/tpel.2014.2350001 |
| [13] | 薛花,钦佳南,王育飞,等 .基于鲁棒扰动观测器的交流电力弹簧反馈线性化解耦控制[J].电力系统自动化,2021,45(16):189-199. |
| XUE H, QIN J N, WANG Y F,et al .Feedback linearization decoupling control of AC electric spring based on robust disturbance observer[J].Automation of Electric Power Systems,2021,45(16):189-199. | |
| [14] | 吴捷,王宝华 .基于最优比例积分的电力弹簧控制器设计[J].电气自动化,2017,39(4):39-43. |
| WU J, WANG B H .Design of an electric spring controller based on optimal PI[J].Electrical Automation,2017,39(4):39-43. | |
| [15] | LEE C K, CHAUDHURI B, HUI S Y .Hardware and control implementation of electric springs for stabilizing future smart grid with intermittent renewable energy sources[J].IEEE Journal of Emerging and Selected Topics in Power Electronics,2013,1(1):18-27. doi:10.1109/jestpe.2013.2264091 |
| [16] | CHAUDHURI N R, LEE C K, CHAUDHURI B,et al .Dynamic modeling of electric springs[J].IEEE Transactions on Smart Grid,2014,5(5):2450-2458. doi:10.1109/tsg.2014.2319858 |
| [17] | 程明,王青松,张建忠 .电力弹簧理论分析与控制器设计[J].中国电机工程学报,2015,35(10):2436-2444. |
| CHENG M, WANG Q S, ZHANG J Z .Theoretical analysis and controller design of electric springs[J].Proceedings of the CSEE,2015,35(10):2436-2444. | |
| [18] | YIN F, WANG C, WANG W .Adaptive sliding-mode control for electric spring in microgrids with distributed renewable energy[J].Energies,2022,15(13):4842. doi:10.3390/en15134842 |
| [19] | 尹发根,王淳 .基于无功补偿的电力弹簧有效运行范围分析[J].电力系统保护与控制,2019,47(15):9-16. |
| YIN F G, WANG C .Analysis of the effective operating range of electric spring based on reactive power compensation[J].Power System Protection and Control,2019,47(15):9-16. | |
| [20] | 鲍克勤,吴浩强,程启明,等 .基于E-L模型的电力弹簧无源控制策略 [J].高电压技术,2022,48(12):4986-4995. |
| BAO K Q, WU H Q, CHENG Q M,et al .Passive-based control strategy of electric springs based on E-L model[J].High Voltage Engineering,2022,48(12):4986-4995. | |
| [21] | 赵永熹,张家领,程启明 .三相电力弹簧的无源控制策略研究[J].电机与控制学报,2024,28(3):110-122. |
| ZHAO Y X, ZHANG J L, CHENG Q M .Passivity-based control strategy of three-phase electric springs[J].Electric Machines and Control,2024,28(3): 110-122. | |
| [22] | 赵智忠,杨志,赵世辉 .基于误差积分模糊控制的电力弹簧解耦控制策略[J].可再生能源,2021,39(9):1224-1231. |
| ZHAO Z Z, YANG Z, ZHAO S H .Electric spring decoupling control strategy based on error integral fuzzy control[J].Renewable Energy Resources,2021,39(9):1224-1231. | |
| [23] | ZHANG T, HAO Q, ZHENG Z,et al .An electric spring control strategy based on finite control set-model predictive control[J].Journal Européen Des Systèmes Automatisés,2020,53(4):461-468. doi:10.18280/jesa.530403 |
| [24] | WANG Q, DING H, YAN S,et al .Model predictive phase control for single-phase electric springs[J].Energies,2022,15(18):6654. doi:10.3390/en15186654 |
| [25] | 刘自发,谭雅之 .基于模型预测的直流微网多电力弹簧协同控制策略研究[J].电网技术,2024, 48 (6):2642-2650. |
| LIU Z F, TAN Y Z .Research on cooperative control strategy of multiple DC electric springs in DC microgrid based on model prediction control[J].Power System Technology,2024,48(6):2642-2650. |
| [1] | 周文军. 水轮机调节系统非线性模型预测控制器设计[J]. 发电技术, 2020, 41(4): 407-414. |
| [2] | 龚静,张巧杰. 有源电力滤波器半矢量预测控制策略研究[J]. 发电技术, 2019, 40(5): 462-468. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||