发电技术 ›› 2025, Vol. 46 ›› Issue (4): 637-650.DOI: 10.12096/j.2096-4528.pgt.25251

• 新型电力系统 •    下一篇

大模型在电力行业的应用与挑战

严新荣1,2, 高翔1, 林达2, 郑建2, 游源2, 陶志伟2, 吴昊2, 丁正桃2   

  1. 1.浙江大学能源工程学院,浙江省 杭州市 310007
    2.华电电力科学研究院有限公司,浙江省 杭州市 310030
  • 收稿日期:2025-06-04 修回日期:2025-07-18 出版日期:2025-08-31 发布日期:2025-08-21
  • 作者简介:严新荣(1972),男,硕士,正高级工程师,长期从事能源电力数字化、智能化技术研究,xinrong-yan@chder.com
    高翔(1968),男,博士,中国工程院院士,主要研究方向为新型电力系统及人工智能技术等, xgao1@zju.edu.cn
    林达(1990),男,硕士,高级工程师,主要研究方向为大语言模型技术、知识工程及计算机应用等,da-lin@chder.com
    郑建(1990),男,硕士,高级工程师,主要研究方向为大语言模型技术及计算机应用等, jian-zheng@chder.com
    游源(1984),男,博士,高级工程师,主要研究方向为大语言模型技术及计算机应用等, yuan-you@chder.com
    陶志伟(1984),男,硕士,工程师,主要研究方向为大语言模型技术及计算机应用等, zhiwei-tao@chder.com
    吴昊(1994),男,硕士,工程师,主要研究方向为人工智能、大语言模型及计算机应用等, hao-wu@chder.com
    丁正桃(1964),男,博士,正高级工程师,主要研究方向为控制理论及应用、新型电力系统一体化调控及人工智能技术等, zhengtao-ding@chder.com
  • 基金资助:
    国家重点研发计划项目(2024YFB4206500)

Application and Challenges of Large Models in Power Industry

Xinrong YAN1,2, Xiang GAO1, Da LIN2, Jian ZHENG2, Yuan YOU2, Zhiwei TAO2, Hao WU2, Zhengtao DING2   

  1. 1.College of Energy Engineering, Zhejiang University, Hangzhou 310007, Zhejiang Province, China
    2.Huadian Electric Power Research Institute Co. , Ltd. , Hangzhou 310030, Zhejiang Province, China
  • Received:2025-06-04 Revised:2025-07-18 Published:2025-08-31 Online:2025-08-21
  • Supported by:
    National Key Research and Development Program of China(2024YFB4206500)

摘要:

目的 随着可再生能源接入日益增多,新型电力系统的复杂性大大增强,电力行业需要基于更大规模的多源数据融合、更复杂的分析决策,并通过更智能化的手段提高系统的灵活性和适应性。以大语言模型为代表的大模型因其强大的自然语言处理能力及其在多种复杂任务中的推理能力而受到极大关注。基于此,从大语言模型在电力行业应用的实现技术出发,归纳总结相关成果,为后续大模型技术应用提供借鉴。 方法 首先,介绍了大语言模型应用落地的关键技术,包括提示词工程、检索增强生成、模型微调和智能体开发,这些技术确保大语言模型在实际应用中更准确实用,拓宽了应用场景。其次,介绍了大语言模型在电力知识服务、电力辅助决策、设备故障诊断、电力系统预测等领域应用的研究进展。最后,分析了大语言模型在电力行业应用的挑战。 结论 大模型在电力行业的应用主要集中在以大语言模型为基础的场景且较为成熟,而基于多模态大模型、时序大模型及大小模型协同的更复杂场景的应用仍处于探索和快速发展阶段。

关键词: 电力行业, 新型电力系统, 人工智能(AI), 大语言模型, 知识服务, 辅助决策, 故障诊断, 预测

Abstract:

Objectives With the growing integration of renewable energy, the complexity of new power system has significantly increased. The power industry requires the integration of large-scale multi-source data, more complex analysis and decision-making processes, and more intelligent approaches to enhance system flexibility and adaptability. Large models represented by large language models have attracted significant attention due to their robust natural language processing capabilities and reasoning abilities across various complex tasks. Based on this, the study reviews implementation technologies for applying large language models in the power industry and summarizes relevant achievements to inform future applications. Methods Firstly, key technologies for implementing large language models are introduced, including prompt engineering, retrieval-augmented generation, model fine-tuning, and the development of intelligent agents. These technologies enhance the accuracy and practicality of large language models in real-world applications and broaden their range of use cases. Secondly, the study outlines the research progress of large language models in areas such as power knowledge services, assisted decision-making, equipment fault diagnosis, and power system prediction. Lastly, the challenges in applying large language models in the power industry are analyzed. Conclusions The application of large models in the power industry is currently focused on the cenarios based on large language models, which are relatively mature. In contrast, applications involving multimodal models, time-series models, and large-small model collaboration remain in the exploratory and rapidly evolving stage.

Key words: power industry, new power system, artificial intelligence (AI), large language model, knowledge services, assisted decision-making, fault diagnosis, prediction

中图分类号: