发电技术 ›› 2025, Vol. 46 ›› Issue (5): 968-976.DOI: 10.12096/j.2096-4528.pgt.24201

• 新型电力系统 • 上一篇    下一篇

基于模型预测的交流电力弹簧电流控制策略研究

范巍瀚1, 滕青芳1, 降志文1, 郑智杰1, 钟晴1, 马喜平2   

  1. 1.兰州交通大学自动化与电气工程学院,甘肃省 兰州市 730070
    2.国网甘肃省电力科学研究院,甘肃省 兰州市 730070
  • 收稿日期:2024-09-09 修回日期:2024-10-18 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:范巍瀚(1998),男,硕士研究生,主要研究方向为电力弹簧控制技术,1009964840@qq.com
    滕青芳(1964),女,博士,教授,主要研究方向为控制理论与工程、电气工程控制,本文通信作者,tengqf@mail.lzjtu.cn
    降志文(2001),男,硕士研究生,主要研究方向为逆变器控制,1352167503@qq.com;
    郑智杰(2000),男,硕士研究生,主要研究方向为微网并联逆变器鲁棒控制,1215858461@qq.com
    钟晴(1997),男,硕士研究生,主要研究方向为光伏微电网控制,786419521@qq.com
    马喜平(1987),男,博士,高级工程师,主要研究方向为新能源并网技术及电网降损节能技术,maxpgs@163.com
  • 基金资助:
    国家自然科学基金项目(62063015)

Research on Model Predictive Current Control Strategy for AC Electric Springs

Weihan FAN1, Qingfang TENG1, Zhiwen JIANG1, Zhijie ZHENG1, Qing ZHONG1, Xiping MA2   

  1. 1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu Province, China
    2.State Grid Gansu Electric Power Research Institute, Lanzhou 730070, Gansu Province, China
  • Received:2024-09-09 Revised:2024-10-18 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(62063015)

摘要:

目的 为提高交流电力弹簧(AC electric spring,ACES)在负载投切和网侧电压波动场景下稳定关键性负载(critical load,CL)电压的能力,提出一种模型预测电流控制(model predictive current control,MPCC)策略。 方法 首先,针对可变负载工况,将关键性负载电流参考模型搭建为下一时刻关键性负载参考电压与当前时刻关键性负载等效阻抗值之比,通过可变的关键性负载电流参考值,提高了负载投切时ACES的动态响应能力。其次,针对关键性负载电压波动,控制策略通过ACES工作在不同的模式,使得关键性负载电流预测值追踪变化的电流参考值,从而使关键性负载电压追踪给定值。 结果 所提控制策略在负载投切和网侧电压波动的工况下,将关键性负载电压波动抑制在0.45%以内的同时兼顾了非关键性负载的电能质量,并且关键性负载电压的畸变率被控制在0.6%以下。 结论 该控制策略有效地提高了电力弹簧抑制负载电压波动的能力,为电力弹簧并入电网的工作提供了参考。

关键词: 电流控制, 模型预测控制, 交流电力弹簧, 关键性负载

Abstract:

Objectives To improve the ability of AC electric springs (ACES) to stabilize the voltage of critical load (CL) under load switching and grid-side voltage fluctuations, a model predictive current control (MPCC) strategy is proposed. Methods Firstly, for variable load conditions, the reference model of the critical load current is established as the ratio of the next critical load reference voltage to the critical load equivalent impedance at the current moment. The dynamic response capability of ACES during load switching is improved by using the variable critical load current reference value. Secondly, to address critical load voltage fluctuations, the control strategy operates the ACES in different modes, enabling the predicted critical load current to track the varying current reference value. This further ensures that the critical load voltage tracks the given value. Results Under the conditions of load switching and grid-side voltage fluctuations, the proposed control strategy suppresses the critical load voltage fluctuations within 0.45% while maintaining the power quality of the non-critical load, and controls the total harmonic distortion of the critical load voltage below 0.6%. Conclusions The control strategy effectively improves the ability of ACES to suppress load voltage fluctuations and provides a reference for its integration into the power grid.

Key words: current control, model predictive control, AC electric spring, critical load

中图分类号: