发电技术 ›› 2025, Vol. 46 ›› Issue (5): 1050-1058.DOI: 10.12096/j.2096-4528.pgt.24056

• 发电及环境保护 • 上一篇    

一种两阶段声学层析成像温度分布重建方法

张立峰, 董祥虎   

  1. 华北电力大学自动化系,河北省 保定市 071003
  • 收稿日期:2024-04-03 修回日期:2024-05-05 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:张立峰(1979),男,博士,副教授,主要从事多相流检测及电学层析成像技术方面的研究工作,lifeng.zhang@ncepu.edu.cn
    董祥虎(2000),男,硕士研究生,主要从事声学层析测温方面的研究工作,18354326638@163.com
  • 基金资助:
    国家自然科学基金项目(61973115)

A Two-Stage Acoustic Tomography Method for Temperature Distribution Reconstruction

Lifeng ZHANG, Xianghu DONG   

  1. Department of Automation, North China Electric Power University, Baoding 071003, Hebei Province, China
  • Received:2024-04-03 Revised:2024-05-05 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(61973115)

摘要:

目的 为提高声学层析成像温度分布的重建精度,提出一种基于压缩感知与多尺度扩张卷积的两阶段重建算法。 方法 首先建立声学层析成像温度分布重建的压缩感知模型,并使用正交匹配追踪(orthogonal matching pursuit,OMP)算法求解得到粗网格温度分布;然后构建多尺度卷积神经网络,预测得到细网格温度分布重建结果,在网络模型中通过引入原始测量信息补偿通道提高对先验信息的利用率;分别建立3种典型温度分布的数值模型,并与OMP算法、代数重建(algebraic reconstruction technique,ART)算法、同步代数重建(simultaneous algebraic reconstruction technique,SART)算法以及Landweber算法进行对比试验。 结果 所提算法的平均相对误差和均方根误差分别为0.45%和0.64%,重建误差均小于其他算法。 结论 两阶段温度分布重建算法能够有效缓解温度分布重建问题的病态性,进而提高温度分布的重建精度。

关键词: 声学层析成像, 高分辨率重建, 压缩感知, 多尺度扩张卷积, 正交匹配追踪

Abstract:

Objectives To improve the reconstruction accuracy of temperature distribution in acoustic tomography, a two-stage reconstruction algorithm based on compressed sensing and multi-scale dilated convolution is proposed. Methods First, a compressed sensing model for reconstructing temperature distribution in acoustic tomography is developed, and the orthogonal matching pursuit (OMP) algorithm is used to obtain a coarse-grid temperature distribution. Then, a multi-scale convolutional neural network is established to predict the fine-grid temperature distribution reconstruction results, where a compensation channel for original measurement is incorporated to enhance the utilization of prior information. Three numerical models of typical temperature distributions are established and compared with the OMP, algebraic reconstruction technique (ART), simultaneous algebraic reconstruction technique (SART), and Landweber algorithms. Results The proposed algorithm achieves an average relative error and a root mean square error of 0.45% and 0.64%, respectively, with reconstruction errors lower than those of other algorithms. Conclusions The two-stage temperature distribution reconstruction algorithm can effectively alleviate the ill-posedness of the temperature distribution reconstruction problem, thereby improving the reconstruction accuracy.

Key words: acoustic tomography, high-resolution reconstruction, compressed sensing, multi-scale dilated convolution, orthogonal matching pursuit

中图分类号: