发电技术 ›› 2025, Vol. 46 ›› Issue (4): 727-736.DOI: 10.12096/j.2096-4528.pgt.23127

• 新型电力系统 • 上一篇    下一篇

氢燃料电池钛双极板液压成形机理研究

张杰1,2, 王瑞川1,2   

  1. 1.西南石油大学机电工程学院,四川省 成都市 610500
    2.石油天然气装备教育部 重点实验室(西南石油大学),四川省 成都市 610500
  • 收稿日期:2024-04-14 修回日期:2024-07-01 出版日期:2025-08-31 发布日期:2025-08-21
  • 作者简介:张杰(1987),男,博士,教授,主要从事氢能装备与氢安全、管道与压力容器服役安全等研究,Longmenshao@163.com
  • 基金资助:
    国家自然科学基金项目(52104223);中央引导地方发展专项项目(2024ZYD0125)

Study on Hydroforming Mechanism of Titanium Bipolar Plates for Hydrogen Fuel Cells

Jie ZHANG1,2, Ruichuan WANG1,2   

  1. 1.School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan Province, China
    2.Key Laboratory of Oil & Gas Equipment of Ministry of Education (Southwest Petroleum University), Chengdu 610500, Sichuan Province, China
  • Received:2024-04-14 Revised:2024-07-01 Published:2025-08-31 Online:2025-08-21
  • Supported by:
    National Natural Science Foundation of China(52104223);Special Project of Central Government Guiding Local Development(2024ZYD0125)

摘要:

目的 钛双极板因材料各向异性,导致其加工难度大。液压成形工艺在国外双极板成形领域已商业化应用,而国内研究较少。为了揭示双极板液压成形工艺参数与成形质量之间的控制关系,亟需开展钛双极板液压成形机理研究。 方法 研究了蛇形流场钛双极板液压成形工艺,分析了液压成形过程中双极板力学特性,探究了模具外倒角、流道宽度、流道深度、板材厚度以及液压工艺参数对双极板成形质量的影响。 结果 双极板的蛇形流道转角区应力成分复杂,最容易发生破裂;增大双极板外倒角半径可降低其减薄率,外倒角半径应不小于0.20 mm;增加流道深度严重影响其减薄效果,流道深度不宜超过0.28 mm;当流道宽度和肋宽相等时,双极板的减薄率最小;液压力在板料底部接触模具前对减薄影响较大,接触后影响较小;随着极板厚度增加,双极板成形效果降低。 结论 液压成形工艺参数与结构参数的协同设计是保障双极板成形质量的关键,研究结果可为金属双极板成形工艺设计与优化提供理论依据。

关键词: 氢燃料电池, 质子交换膜燃料电池(PEMFC), 金属双极板, 液压成形, 减薄率, 应力分布

Abstract:

Objectives Due to the anisotropic nature of titanium bipolar plates, their manufacturing process is highly challenging. While hydroforming has been commercially applied in bipolar plate production abroad, research in this field remains limited domestically. In order to reveal the control relationship between hydroforming parameters and quality in bipolar plate fabrication, it is essential to investigate the hydroforming mechanism of titanium bipolar plates. Methods This study focuses on the hydroforming process of titanium bipolar plates with a serpentine flow field. It analyzes the mechanical properties of the bipolar plates during the hydroforming process and explores the effects of key parameters, including die fillet radius, flow channel width, flow channel depth, sheet thickness, and hydraulic pressure, on the final forming quality. Results The stress distribution in the corner regions of the serpentine flow channels is highly complex, making these areas most susceptible to fracture. Increasing the die fillet radius effectively reduces the thinning rate, with a recommended minimum radius of 0.2 mm. Increasing flow channel depth significantly worsens thinning, and the depth should not exceed 0.28 mm. When the flow channel width equals the rib width, the thinning rate reaches its minimum. Hydraulic pressure has a greater impact on thinning before the plate contacts the die bottom but its impact diminishes afterward. Additionally, as the plate thickness increases, the overall forming quality deteriorates. Conclusions The coordinated design of hydroforming parameters and structural parameters is critical for ensuring the forming quality of bipolar plates. These findings provide a theoretical foundation for the design and optimization of metal bipolar plate hydroforming process.

Key words: hydrogen fuel cell, proton exchange membrane fuel cell (PEMFC), metal bipolar plate, hydroforming, thinning rate, stress distribution

中图分类号: