发电技术 ›› 2021, Vol. 42 ›› Issue (5): 604-613.DOI: 10.12096/j.2096-4528.pgt.21033
王志明1(), 潘欣全2(
), 何伟男1(
), 谭益坤3(
), 赵元宾3,*(
)
收稿日期:
2021-04-25
出版日期:
2021-10-31
发布日期:
2021-10-13
通讯作者:
赵元宾
作者简介:
王志明(1972), 男, 高级工程师, 主要研究方向为核电热能动力与新能源节能环保技术, wangzhiming@cgnpc.com.cn基金资助:
Zhiming WANG1(), Xinquan PAN2(
), Weinan HE1(
), Yikun TAN3(
), Yuanbin ZHAO3,*(
)
Received:
2021-04-25
Published:
2021-10-31
Online:
2021-10-13
Contact:
Yuanbin ZHAO
Supported by:
摘要:
针对湿式蒸发冷却塔蒸发量大、排污量大、冬季雾羽大等弊端,介绍了盘管型、填料型及复合型蒸发冷却塔气—水两相传热传质计算公式,阐明了气—水传热传质过程空气温度、湿度、焓值等参数精确计算方法。结合实时进塔空气温度、含湿量和质量流量,计算同一时间段的循环水蒸发量、排污量和补水量,结果表明:在相同相对湿度下,干球温度34℃对应的循环水蒸发量、补水量比干球温度20℃对应的量减小15%;在相同湿球温度下,干球温度34℃对应的循环水蒸发量、补水量比干球温度20℃对应的量增大48.8%。因此,蒸发冷却过程中空气参数的精确计算可实现湿式蒸发冷却塔蒸发量、补水量及排污量的实时计算及调节,并进而推进其节水消雾和节能减排优化。
中图分类号:
王志明, 潘欣全, 何伟男, 谭益坤, 赵元宾. 蒸发冷却空气参数计算及其在湿式蒸发冷却塔节水节能中的应用[J]. 发电技术, 2021, 42(5): 604-613.
Zhiming WANG, Xinquan PAN, Weinan HE, Yikun TAN, Yuanbin ZHAO. Calculation of Evaporative Cooling Air Parameters and Relevant Applications in Wet Evaporative Cooing Tower Water and Energy Saving[J]. Power Generation Technology, 2021, 42(5): 604-613.
状态点 | 空气干球温度/℃ | 空气湿球温度/℃ | 相对湿度/% | 出塔空气温度/℃ | 出塔空气含湿量/(g/kg) | 蒸发量/(kg/h) | 补水量/(kg/h) |
1 | 20 | 15.10 | 60 | 28.78 | 22.72 | 1 242.6 | 1 553.25 |
2 | 22 | 16.82 | 60 | 29.38 | 23.74 | 1 227.0 | 1 533.75 |
3 | 24 | 18.55 | 60 | 30.03 | 24.88 | 1 209.0 | 1 511.25 |
4 | 26 | 20.28 | 60 | 30.69 | 26.09 | 1 184.3 | 1 480.38 |
5 | 28 | 22.01 | 60 | 31.39 | 27.41 | 1 155.5 | 1 444.38 |
6 | 30 | 23.75 | 60 | 32.19 | 29.00 | 1 133.7 | 1 417.13 |
7 | 32 | 25.49 | 60 | 33.00 | 30.68 | 1 102.7 | 1 378.38 |
8 | 34 | 27.23 | 60 | 33.78 | 32.39 | 1 056.2 | 1 320.25 |
表1 相对湿度恒定时进塔空气干球温度提高对循环水蒸发量、补水量的影响
Tab. 1 Influence of increasing air dry bulb temperature into the tower on the evaporation and replenishment of circulating water under constant relative humidity
状态点 | 空气干球温度/℃ | 空气湿球温度/℃ | 相对湿度/% | 出塔空气温度/℃ | 出塔空气含湿量/(g/kg) | 蒸发量/(kg/h) | 补水量/(kg/h) |
1 | 20 | 15.10 | 60 | 28.78 | 22.72 | 1 242.6 | 1 553.25 |
2 | 22 | 16.82 | 60 | 29.38 | 23.74 | 1 227.0 | 1 533.75 |
3 | 24 | 18.55 | 60 | 30.03 | 24.88 | 1 209.0 | 1 511.25 |
4 | 26 | 20.28 | 60 | 30.69 | 26.09 | 1 184.3 | 1 480.38 |
5 | 28 | 22.01 | 60 | 31.39 | 27.41 | 1 155.5 | 1 444.38 |
6 | 30 | 23.75 | 60 | 32.19 | 29.00 | 1 133.7 | 1 417.13 |
7 | 32 | 25.49 | 60 | 33.00 | 30.68 | 1 102.7 | 1 378.38 |
8 | 34 | 27.23 | 60 | 33.78 | 32.39 | 1 056.2 | 1 320.25 |
状态点 | 空气干球温度/℃ | 空气湿球温度/℃ | 相对湿度/% | 出塔空气温度/℃ | 出塔空气含湿量/(g/kg) | 蒸发量/(kg/h) | 补水量/(kg/h) |
1 | 20 | 18 | 82.7 | 29.89 | 24.66 | 1 104.8 | 1 381.00 |
2 | 22 | 18 | 68.2 | 29.94 | 24.72 | 1 182.9 | 1 478.63 |
3 | 24 | 18 | 56.0 | 29.98 | 24.77 | 1 260.7 | 1 575.88 |
4 | 26 | 18 | 45.8 | 30.02 | 24.83 | 1 338.0 | 1 672.50 |
5 | 28 | 18 | 37.3 | 30.07 | 24.90 | 1 416.1 | 1 770.13 |
6 | 30 | 18 | 30.1 | 30.11 | 24.96 | 1 492.9 | 1 866.14 |
7 | 32 | 18 | 24.1 | 30.14 | 25.01 | 1 568.3 | 1 960.38 |
8 | 34 | 18 | 19.1 | 30.17 | 25.08 | 1 644.4 | 2 055.50 |
表2 湿球温度恒定时进塔空气干球温度提高对循环水蒸发量、补水量的影响
Tab. 2 Influence of increasing air dry bulb temperature into the tower on the evaporation and replenishment of circulating water under constant wet ball temperature
状态点 | 空气干球温度/℃ | 空气湿球温度/℃ | 相对湿度/% | 出塔空气温度/℃ | 出塔空气含湿量/(g/kg) | 蒸发量/(kg/h) | 补水量/(kg/h) |
1 | 20 | 18 | 82.7 | 29.89 | 24.66 | 1 104.8 | 1 381.00 |
2 | 22 | 18 | 68.2 | 29.94 | 24.72 | 1 182.9 | 1 478.63 |
3 | 24 | 18 | 56.0 | 29.98 | 24.77 | 1 260.7 | 1 575.88 |
4 | 26 | 18 | 45.8 | 30.02 | 24.83 | 1 338.0 | 1 672.50 |
5 | 28 | 18 | 37.3 | 30.07 | 24.90 | 1 416.1 | 1 770.13 |
6 | 30 | 18 | 30.1 | 30.11 | 24.96 | 1 492.9 | 1 866.14 |
7 | 32 | 18 | 24.1 | 30.14 | 25.01 | 1 568.3 | 1 960.38 |
8 | 34 | 18 | 19.1 | 30.17 | 25.08 | 1 644.4 | 2 055.50 |
1 |
WEERASOORIYA R R , LIYANAGE L P K , RATHNAPPRIYA R H K , et al. Industrial water conservation by water footprint and sustainable development goals: a review[J]. Environment, Development and Sustainability, 2021, 23, 12661- 12709.
DOI |
2 |
ZOU D L , CONG H B . Evaluation and influencing factors of China's industrial water resource utilization efficiency from the perspective of spatial effect[J]. AEJ-Alexandria Engineering Journal, 2021, 60 (1): 173- 182.
DOI |
3 |
YU Q W , WU F P , ZHANG Z F , et al. Technical inefficiency, abatement cost and substitutability of industrial water pollutants in Jiangsu province, China[J]. Journal of Cleaner Production, 2021, 280, 124260.
DOI |
4 |
JIA C H , YAN P , LIU P , et al. Energy industrial water withdrawal under different energy development scenarios: a multi-regional approach and a case study of China[J]. Renewable and Sustainable Energy Reviews, 2021, 135, 110224.
DOI |
5 |
YANG F , WANG D W , ZHAO L L , et al. Efficiency evaluation for regional industrial water use and wastewater treatment systems in China: a dynamic interactive network slacks-based measure model[J]. Journal of Environmental Management, 2021, 279, 111721.
DOI |
6 |
李海红, 袁令, 王丽珍, 等. 我国工业节水分析与推进建议[J]. 中国水利, 2020, (19): 44- 46.
DOI |
LI H H , YUAN L , WANG L Z , et al. The analysis and suggestion to industrial water-saving of our country[J]. China Water Resources, 2020, (19): 44- 46.
DOI |
|
7 |
LANDEN D B , JACOB F T , KODY M P . Real-time optimization of multi-cell industrial evaporative cooling towers using machine learning and particle swarm optimization[J]. Journal of Cleaner Production, 2020, 271, 122175.
DOI |
8 |
MUSTAPHA S , AHMED S . Simultaneous water and energy saving in cooling water networks using pinch approach[J]. Materials Today: Proceedings, 2019, 13, 1115- 1124.
DOI |
9 |
WANG W S , GE X W , ZHAO S F , et al. A novel approach for water conservation and plume abatement in mechanical draft cooling towers[J]. Atmosphere, 2019, 10 (12): 734.
DOI |
10 |
LV Z Q , CAI J J , SUN W Q , et al. Analysis and optimization of open circulating cooling water system[J]. Water, 2018, 10, 1592.
DOI |
11 |
LEES M . The economics of wet versus dry cooling for combined cycle[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1995, 209 (1): 37- 44.
DOI |
12 |
ANDREAS S . Combined wet/dry cooling towers of cell-type construction[J]. Journal of Energy Engineering, 1998, 124 (3): 104- 121.
DOI |
13 |
NIENBORG B , MATHIEU M , Alexander S , et al. Model-based evaluation of air-side fouling in closed-circuit cooling towers[J]. Energies, 2021, 14 (3): 695.
DOI |
14 | 余建航, 屈治国, 李澎, 等. 逆流湿式冷却塔宏观预测耦合模型及其热力性能研究[J]. 热能动力工程, 2020, 35 (6): 183- 190. |
YU J H , QU Z G , LI P , et al. Prediction conjugative model for a counterflow wet cooling tower and its thermodynamic performance analysis[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35 (6): 183- 190. | |
15 |
JIANG L , HAN Q , WANG N N , et al. The effects of water droplet diameter distribution in the rain zone on the cooling capacity and water-splashing noise for natural draft wet cooling towers[J]. International Journal of Thermal Sciences, 2021, 164, 106875.
DOI |
16 |
ZENGIN O , AYHAN O . Experimental and theoretical analysis of mechanical draft counterflow wet cooling towers[J]. Science and Technology for the Built Environment, 2021, 27 (1): 14- 27.
DOI |
17 |
WAN D W , GAO S S , LIU M H , et al. Effect of cooling water salinity on the cooling performance of natural draft wet cooling tower[J]. International Journal of Heat and Mass Transfer, 2020, 161, 120257.
DOI |
18 | 刘桦, 朱其萍, 谢晓翠, 等. 考虑环境参数不确定性的闭式冷却塔随机模拟研究[J]. 大连理工大学学报, 2019, 59 (3): 244- 250. |
LIU Y , ZHU Q P , XIE X C , et al. Study of stochastic modeling of closed cooling tower considering uncertainty of ambient parameters[J]. Journal of Dalian University of Technology, 2019, 59 (3): 244- 250. | |
19 | ZHOU Y S , DING X , XIE W . Experimental research on heat transfer of closed cooling tower with packing[J]. Advanced Materials Research, 2014, 960, 614- 620. |
20 | QIAN J F, LI L, TAN Y K, et al. Research and application of closed cooling tower[C]//2nd International Conference on Electronic & Mechanical Engineering and Information Technology. Paris, France: Atlantis Press, 2012: 2213-2215. |
21 |
BUDIHARDJO , NASRUDDIN , MOHAMMAD H N . Experimental and simulation study on the performance of counter flow closed cooling tower systems[J]. International Journal of Technology, 2015, 6 (3): 365- 379.
DOI |
22 | 夏莉, 杨卫波, 徐瑞. 参数对横流闭式冷却塔冷却效率的影响[J]. 扬州大学学报(自然科学版), 2018, 21 (4): 27- 32. |
XIA L , YANG W B , XU R . Study on the effect of different parameters on cooling efficiency of cross-flow closed cooling tower[J]. Journal of Yangzhou University (Natural Science Edition), 2018, 21 (4): 27- 32. | |
23 | PHILIPP P , CHRISTOPHER L , RICHARD Ö . Hybrid cooling towers in a free-cooling application: modeling and field measurement verification[J]. Chemical Engineering & Technology, 2019, 42 (9): 1871- 1878. |
24 |
WEI H M , HUANG X W , CHEN L , et al. Performance of a novel natural draft hybrid cooling tower for thermal power generation[J]. Energy Procedia, 2019, 158, 5231- 5237.
DOI |
25 |
NOURANI Z , NASERBEGI A , TAYYEBI S H , et al. Thermodynamic evaluation of hybrid cooling towers based on ambient temperature[J]. Thermal Science and Engineering Progress, 2019, 14, 100406.
DOI |
26 | HASAN A , KAI S . Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings[J]. Energy & Buildings, 2002, 34 (5): 477- 486. |
27 | HEYNS J A , KROGER D G . Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler[J]. Applied Thermal Engineering, 2009, 30 (5): 492- 498. |
28 | GOMEZ E V , MARTINEZ F J R , GONZALEZ A T . Experimental characterisation of the operation and comparative study of two semi-indirect evaporative systems[J]. Applied Thermal Engineering, 2010, 30 (11): 1447- 1454. |
29 | NASR M R J , BEHFAR R . A novel design for evaporative fluid coolers[J]. Applied Thermal Engineering, 2010, 30 (17): 2746- 2752. |
30 | PAPAEFTHIMIOU V D , ROGDAKIS E D , KORONAKI I P , et al. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower[J]. Applied Thermal Engineering, 2012, 33, 199- 207. |
31 | 王明勇, 栾俊, 刘江. 冷却塔填料布置方式对热力性能的影响[J]. 热力发电, 2018, 47 (3): 82- 87. |
WANG M Y , LUAN J , LIU J . Impact of non-uniform fill layouts of the cooling tower on thermal performance[J]. Thermal Power Generation, 2018, 47 (3): 82- 87. | |
32 | 陈友良, 石永锋, 谢大幸, 等. 基于焓差法的逆流湿式冷却塔性能诊断数学模型[J]. 给水排水, 2016, 52 (S1): 317- 321. |
CHEN Y L , SHI Y F , XIE D X , et al. Counterflow wet cooling tower performance diagnosis mathematical model based on enthalpy difference method[J]. Water & Wastewater Engineering, 2016, 52 (S1): 317- 321. | |
33 |
MIAO H , WANG Z , NIU Y . Key issues and cooling performance comparison of different closed Brayton cycle based cooling systems for scramjet[J]. Applied Thermal Engineering, 2020, 179, 115751.
DOI |
34 |
任勤, 周亚素, 张恒钦. 基于湿球温度的逆流闭式冷却塔换热模型分析[J]. 建筑热能通风空调, 2010, 29 (1): 9- 12.
DOI |
REN Q , ZHOU Y S , ZHANG H Q . Analysis of heat transfer model for counter-flow closed cooling tower based on wet bulb temperature[J]. Building Energy & Environment, 2010, 29 (1): 9- 12.
DOI |
|
35 | 李宁瑾. 横流闭式冷却塔数学模型的试验验证[J]. 制冷与空调, 2016, 16 (9): 58- 66. |
LI N J . Experimental verification mathematical mode of closed cross-flow cooling towers[J]. Refrigeration and Air-Conditioning, 2016, 16 (9): 58- 66. | |
36 | YUAN W , SUN F Z , LIU R , et al. Effect of change factors on evaporation loss based on cold end system in natural draft counter-flow wet cooling towers[J]. Journal of Thermal Science and Technology, 2021, 16 (2): 00295. |
37 |
朱冬生, 郑伟业, 吴佳菲, 等. 闭式冷却塔的数值分析[J]. 流体机械, 2013, 41 (1): 59- 62.
DOI |
ZHU D S , ZHENG W Y , WU J F , et al. Computational analysis of closed wet cooling towers[J]. Fluid Machinery, 2013, 41 (1): 59- 62.
DOI |
|
38 | 郑水华. 超大型冷却塔内气液两相流动和传热传质过程的数值模拟研究[D]. 杭州: 浙江大学, 2012. |
ZHENG S H. Numerical simulation of gas-liquid flow, heat and masstransfer process in super-large cooling tower[D]. Hangzhou: Zhejiang University, 2012. | |
39 |
丁枭, 周亚素, 黄凯, 等. 不同假设条件下闭式冷却塔数学建模与实验验证[J]. 建筑热能通风空调, 2016, 35 (3): 9- 13.
DOI |
DING X , ZHOU Y S , HUANG K , et al. Numerical model and experimental verification of closed cooling tower based on different assumptions[J]. Building Energy & Environment, 2016, 35 (3): 9- 13.
DOI |
|
40 | 牛润萍, 由世俊, 陈其针, 等. 用于供冷的闭式冷却塔换热模型与性能分析[J]. 沈阳建筑大学学报(自然科学版), 2007, (3): 453- 456. |
NIU R P , YOU S J , CHEN Q Z , et al. Modeling and performance analysis of the closed cooling tower[J]. Journal of Shenyang Jianzhu University (Natural Science), 2007, (3): 453- 456. | |
41 |
邵凯, 赵兰萍, 徐鑫祥. 闭式冷却塔换热盘管数值模拟[J]. 发电与空调, 2012, 33 (6): 70- 74.
DOI |
SHAO K , ZHAO L P , XU X X . Numerical simulation of heat exchange tube units of closed cooling tower[J]. Power Generation & Air Condition, 2012, 33 (6): 70- 74.
DOI |
|
42 |
YUAN W , SUN F Z , LIU R , et al. The Effect of air parameters on the evaporation loss in a natural draft counter-flow wet cooling tower[J]. Energies, 2020, 13 (23): 6174- 6174.
DOI |
43 | 朱珣. 闭式冷却塔中水平椭圆管传热传质性能研究[D]. 上海: 东华大学, 2016. |
ZHU X. Investigation of heat and mass transfer of horizontal oval tube in closed wet cooling tower[D]. Shanghai: Donghua University, 2016. | |
44 | 牛修富. 侧风环境下自然通风逆流湿式冷却塔的配水系统研究[D]. 济南: 山东大学, 2008. |
NIU X F. Research on water distribution system of natural draft counter-flow wet cooling towers under cross-wind conditions[D]. Jinan: Shandong University, 2008. | |
45 | SARKER M M A , KIM E , MOON C G , et al. Performance characteristics of the hybrid closed circuit cooling tower[J]. Energy & Buildings, 2008, 40 (8): 1529- 1535. |
46 | 李秀云, 闻浩祖. 冷却塔的节能潜力分析[J]. 中国电力, 1997, 30 (10): 34- 36. |
LI X Y , WEN H Z . To analyze energy-saving potential of cooling tower[J]. Electric Power, 1997, 30 (10): 34- 36. | |
47 | 吴佳菲, 曾力丁, 郑伟业, 等. 高效闭式冷却塔的优化设计及节能运行[J]. 化学工程, 2012, 40 (6): 1- 4. |
WU J F , ZENG L D , ZHENG W Y , et al. Design optimization and energy-saving operation of high efficient closed circuit cooling tower[J]. Chemical Engineering (China), 2012, 40 (6): 1- 4. | |
48 | 胡少华, 高沙沙, 刘忠超, 等. 干湿联合冷却塔冷却节水分析软件开发及应用[J]. 化工进展, 2020, 39 (S2): 447- 453. |
HU S H , GAO S S , LIU Z C , et al. Development and application of cooling and water-saving analysis software for dry-wet hybrid cooling tower[J]. Chemical Industry and Engineering Progress, 2020, 39 (S2): 447- 453. | |
49 |
HU H M , LI Z , JIANG Y Y , et al. Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system[J]. Energy, 2018, 147, 729- 741.
DOI |
50 | 陈铁锋, 胡少华, 赵元宾, 等. 干湿联合冷却塔消雾节水特性的耦合研究[J]. 中国电机工程学报, 2021, 41 (1): 277- 287. |
CHEN T F , HU S H , ZHAO Y B , et al. Coupling study on plume abatement and water saving performance for dry-wet cooling tower[J]. Procedings of the CSEE, 2021, 41 (1): 277- 287. |
[1] | 王华霆, 陈衡, 徐钢, 安吉振. 煤电升级改造背景下烟气余热利用节能效益对比评估[J]. 发电技术, 2024, 45(1): 90-98. |
[2] | 李延兵, 贾树旺, 张军亮, 符悦, 刘明, 严俊杰. 汽轮机高位布置超超临界燃煤发电系统变工况㶲经济性分析[J]. 发电技术, 2024, 45(1): 69-78. |
[3] | 黄宇箴, 陈彦奇, 吴志聪, 徐钢, 刘彤. 碳中和背景下热电联产机组抽汽分配节能优化[J]. 发电技术, 2023, 44(1): 85-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||