发电技术, 2023, 44(2): 193-200 DOI: 10.12096/j.2096-4528.pgt.21028

发电及环境保护

袋式除尘器脱Hg特性研究

刘含笑, 郭高飞

浙江菲达环保科技股份有限公司,浙江省 诸暨市 311800

Study on Hg Removal Characteristics of Fabric Filter

LIU Hanxiao, GUO Gaofei

Zhejiang Feida Environmental Science & Technology Co. , Ltd. , Zhuji 311800, Zhejiang Province, China

收稿日期: 2022-02-04  

基金资助: 国家重点研发计划项目.  2022YFC3701501

Received: 2022-02-04  

作者简介 About authors

刘含笑(1987),男,硕士,高级工程师,主要从事电力环保技术研发工作,gutounan@163.com

郭高飞(1987),男,工程师,主要从事气力输送技术设计及相关环保技术研发工作。

摘要

袋式除尘器是重要的工业烟尘治理设备。通过机理分析、数据调研和工程实测相结合的手段,对袋式除尘器的脱Hg性能进行了系统研究。结果表明:袋式除尘器在高效除尘的同时会脱除绝大部分颗粒Hg,脱除效率在95%~100%;由于入口气态Hg浓度及飞灰未燃尽碳的含量等不同,袋式除尘器对气态Hg的脱除效率差异较大,但部分测试数据也达到90%以上。工程实测某15 MW 循环流化床(circulating fluidized bed,CFB)锅炉配套袋式除尘器,其对气态Hg、颗粒Hg和总Hg的脱除效率分别为82.14%、99.88%和98.44%,系统Hg平衡系数为91.38%。研究结果可为工业烟气后续Hg排放控制提供一定参考。

关键词: 燃煤电厂 ; 袋式除尘器 ; 脱Hg ; 排放控制 ; 脱除效率

Abstract

Fabric filter is an important industrial dust control equipment. Through the combination of mechanism analysis, measured data research and engineering measurement, the Hg removal performance of fabric filter was studied. The results show that the fabric filter can remove most of the particulate Hg while removing dust efficiently, and the removal efficiency is between 95% and 100%. Due to the differences in inlet gaseous Hg concentration and unburned carbon content of fly ash, the removal efficiency of gaseous Hg by fabric filter varies greatly, but some test data also reach more than 90%. The actual measurement of a 15 MW circulating fluidized bed (CFB) boiler fabric filter was studied, the removal efficiencies of gaseous Hg, particulate Hg and total Hg were found to be 82.14%, 99.88% and 98.44%, respectively, and the Hg balance coefficient of the system was 91.38%. The research results can provide some reference for subsequent Hg emission control of industrial flue gas.

Keywords: coal-fired power plant ; fabric filter ; Hg removal ; emission control ; removal efficiency

PDF (2457KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘含笑, 郭高飞. 袋式除尘器脱Hg特性研究. 发电技术[J], 2023, 44(2): 193-200 DOI:10.12096/j.2096-4528.pgt.21028

LIU Hanxiao, GUO Gaofei. Study on Hg Removal Characteristics of Fabric Filter. Power Generation Technology[J], 2023, 44(2): 193-200 DOI:10.12096/j.2096-4528.pgt.21028

0 引言

袋式除尘器(fabric filter,FF)因具有除尘效率高、初投资成本低、性能稳定以及使用灵活等优点[1-4],在工业烟尘治理领域具有广泛应用。据统计,垃圾焚烧行业几乎全部采用袋式除尘器,钢铁、铝等行业使用袋式除尘器比例达90%,水泥、有色金属等行业使用比例达70%,燃煤电厂使用比例约10%[5]。针对袋式除尘器的研究,现阶段主要集中在超低排放应用、PM2.5高效脱除、新型滤料开发、尘硝一体化脱除、破袋检测等方面[6-10]

燃煤电厂超低排放改造实施后,Hg等重金属的控制已逐渐成为研究热点[11-13]。基于现有污染物控制设备的协同脱除性能,超低排放机组排放的Hg质量浓度可控制在0.26~12.9 μg/m3,相较于超低排放实施前的排放水平有明显下降[14],且在电除尘器前喷入改性飞灰,可进一步提高除尘器脱Hg性能[15-16]。实际上,袋式除尘器在高效除尘的同时,由于粉饼层的存在,对Hg的吸附脱除性能会显著优于电除尘器[17-18]。本文对袋式除尘器的脱Hg性能进行系统研究和分析,旨在为后续Hg排放控制提供借鉴。

1 袋式除尘器脱Hg原理分析

袋式除尘器的除尘主要依靠滤袋和笼骨组成的各单元过滤室,收尘和清灰工作原理如图1所示。含尘气体穿过滤布,粉尘颗粒会吸附并被截留在滤布外表面。在袋式除尘器工作时,随着过滤的不断进行,滤布外表面积聚的粉尘逐渐增多,布袋除尘器的阻力也随之增加。当达到设定阻力值时,清灰控制器发出清灰指令,脉冲阀会向滤袋内侧喷吹出压缩气体,滤袋内部的压力升高,滤布会在瞬间发生“鼓胀”,脱离笼骨表面,将滤袋外表面的粉尘清除下来,并落入灰斗,然后脉冲阀关闭,滤布在负压作用下又返回笼骨表面,恢复过滤收尘功能。

图1

图1   袋式除尘器收尘和清灰工作原理

Fig. 1   Dust collect and removal principle of fabric filter


Hg按形态可分为颗粒Hg和气态Hg,按价态可分为Hg0和Hg2+,其中,Hg0绝大部分以气态形式存在,也是现有环保设备最难协同脱除的。袋式除尘器在高效除尘的同时会脱除绝大部分的颗粒Hg,滤袋表面沉积的一层粉饼层能加强飞灰与烟气的接触,延长含Hg烟气在飞灰表面的停留时间,有利于飞灰对烟气Hg的氧化与吸附。燃煤飞灰炭粒的多孔隙结构和巨大比表面积具有很强的过滤吸附效果[19],且飞灰中含有的未燃尽碳及CaO、Fe2O3等金属氧化物对烟气中的Hg0具有一定的氧化及吸附作用,这些都会进一步增强对烟气中Hg的吸附脱除效果。袋式除尘器的脱Hg机理如图2所示,PPS、PTFE等滤料表面致密、空隙小、过滤性能强,其表面形成的粉尘颗粒堆积层可有效吸附脱除烟气中各形态的Hg。

图2

图2   脱Hg机理

Fig. 2   Mechanism of Hg removal


2 袋式除尘器脱Hg效率分析

通过调研国内外相关文献,剔除部分不完整及明显不合理的数据,搜集并整理得到有效数据21组,其中:燃煤电厂袋式除尘器脱Hg数据6组[20-23];燃煤电厂电袋复合除尘器(electrostatic fabric filter,EF)脱Hg数据5组[24-26];水泥厂袋式除尘器脱Hg数据10组[27-28]

2.1 燃煤电厂袋式除尘器脱Hg效率分析

对6组燃煤电厂袋式除尘器脱Hg数据[20-23]进行整理分析,袋式除尘器对各类形态Hg的脱除效果如图3所示,其中:数据1、2、3分别为某350 MW机组在100%、85%和68%最大连续工况(maximum continuous rating,MCR)下测定结果;数据4、5、6分别为某430、50、80 MW机组的测定结果。由图3可见,不同机组对气态Hg的脱除效率差异较大,在7.24%~92.66%。一方面,脱除效率与袋式除尘器入口的气态Hg质量浓度有关,一般初始质量浓度越高,对应的脱除效率越高,如数据4、5对应袋式除尘器入口气态Hg质量浓度分别为12.54、15.02 μg/m3,对应的脱除效率分别为92.66%、69.77%;另一方面,推测脱除效率与飞灰中未燃尽碳的含量有关,这决定了滤袋表面粉饼层对气态Hg的吸附性能。袋式除尘器可脱除绝大部分的颗粒Hg,脱除效率在95.9%~100%。仅数据5对应的袋式除尘器出口颗粒Hg质量浓度为0.5 μg/m3,脱除效率为95.9%,而其他袋式除尘器出口几乎测不到颗粒Hg。这主要是因为数据5对应的袋式除尘器为2007年前投运使用,执行的Hg排放标准是50 mg/m3,因此颗粒物脱除性能较其他袋式除尘器低。袋式除尘器对总Hg的脱除效率在28.03%~97.07%。

图3

图3   燃煤电厂袋式除尘器脱Hg性能

Fig. 3   Hg removal performance of fabric filter in coal-fired power plant


2.2 燃煤电厂电袋复合除尘器脱Hg效率分析

对5组燃煤电厂电袋复合除尘器脱Hg数据[24-26]进行整理分析,电袋复合除尘器对各类形态Hg的脱除效果如图4所示,其中:数据3、4、5分别为某350 MW机组在100%MCR、85%MCR和68%MCR下的测定结果;数据2为某300 MW机组测定结果;数据1的机组信息不详。由图4可见,不同机组对气态Hg的脱除效率差异较大,在3.38%~99.93%。电袋复合除尘器可脱除绝大部分的颗粒Hg,脱除效率在86.83%~100%,数据3、4、5对应的电袋复合除尘器出口颗粒Hg质量浓度均为0 μg/m3。电袋复合除尘器对总Hg的脱除效率在14.09%~99.52%。从现有数据来看,燃煤电厂袋式除尘器和电袋复合除尘器对各类形态Hg的脱除效果相当。

图4

图4   燃煤电厂电袋复合除尘器脱Hg性能

Fig. 4   Hg removal performance of electrostatic fabric filter in coal-fired power plant


2.3 水泥厂袋式除尘器脱Hg效率分析

对10组水泥厂袋式除尘器脱Hg数据[27-28]进行整理分析,袋式除尘器对各类形态Hg的脱除效果如图5所示,其中,数据1—10分别为某水泥厂1号生产线生料磨在/离线、3号生产线生料磨在线、4号生产线生料磨在/离线、6号生产线生料磨在/离线、10号生产线生料磨离线、11号生产线生料磨在/离线时的测定结果。

图5

图5   水泥厂袋式除尘器脱Hg性能

Fig. 5   Hg removal performance of fabric filter in cement plant


图5可见,不同机组对气态Hg的脱除效率差异较大,在8.17%~87.50%,对颗粒Hg的脱除效率在95.42%~100%,对总Hg的脱除效率在23.43%~99.48%。水泥厂烟气中Hg浓度普遍较高,尤其是生料磨离线运行时,如数据8为10号线生料磨离线时数据,其入口总Hg质量浓度超过270 μg/m3。从现有数据来看,水泥厂袋式除尘器对各类形态Hg的脱除效果略低于燃煤电厂,推测主要原因是其配置较燃煤电厂差。根据工程经验,燃煤电厂实施超低排放后,袋式除尘器出口颗粒质量浓度一般要求在10 mg/m3以下,此时袋式除尘器过滤风速选取一般不超过0.8 m/min。而水泥行业颗粒物排放执行的是30或20 mg/m3标准,过滤风速一般选取在0.9~1.0 m/min。同时,水泥窑袋式除尘器处理烟气温度较燃煤电厂高,水泥窑尾袋式除尘器处理烟气温度一般在100~180 ℃,高温甚至可瞬时达到260 ℃。而燃煤电厂处理烟气温度一般在120 ℃左右,飞灰中含有一定含量的残炭以及金属氧化物[29],加之其多孔隙结构和巨大比表面积有利于吸附脱除烟气中Hg,但物理吸附脱Hg性能与温度严格相关,温度越高,其吸附脱除性能下降越明显[30-31]

3 袋式除尘器脱Hg效率实测

3.1 工程概况及试验方法

平湖独山港环保能源有限公司建设3台出力15 MW级的高温高压CB15型抽汽背压式热电机组,配置3台出力为180 t/h的高温高压(9.81 MPa/540 ℃)燃煤循环流化床(circulating fluidized bed,CFB)锅炉,掺烧污泥,同步建设脱硫脱硝及活性炭喷射设备,工艺流程如图6所示。

图6

图6   工艺流程图

Fig. 6   Process flow diagram


对#1机组开展脱汞性能测试试验,试验期间仅烧煤,且活性炭喷射装置停运,以此考核袋式除尘器的协同脱汞性能。所用试验仪器设备如表1所示,测试方法符合标准GB/T 16157—1996《固定污染源排气中颗粒物测定与气态污染物采样方法》和HJ 917-2017《固定污染源废气 气态汞的测定 活性炭吸附/热裂解原子吸收分光光度法》的相关规定。采用ZR-3700A型烟气汞综合采样器分别在布袋除尘器进出口采集气态Hg样品,其中入口处在枪头增设防尘罩,以避免高尘浓度对活性炭管的污染。采集的气态Hg样品吸附在活性炭中,本次试验采用两段式的活性炭吸附管,其中第2段用于判定样品是否失效(透率≤10%)。烟气中的颗粒Hg主要通过烟尘样品中的Hg含量来测定,其中,烟尘采样采用崂应3012H自动烟尘采样仪、崂应1085B常规烟尘采样枪。煤、渣、飞灰样品经干燥、研磨、过筛等操作后制备分析样品,并采用RA-915F型高频塞曼直接测汞仪来定量分析样品中的汞含量。

表1   试验仪器

Tab. 1  Test instruments

序号仪器名称型号规格厂家
1大气压力表Testo 622
2烟尘采样仪3012H青岛崂应
3等速采样管5 m青岛崂应
4烟气测试仪3022青岛崂应
5采样枪加热120 ℃、除湿M&C
6电子天平AE-1000.01 mg瑞士梅特勒
7汞分析仪RA-915F鲁梅克斯
8烟气汞综合采样器ZR-3700A青岛众瑞

新窗口打开| 下载CSV


3.2 测试结果及分析

经测定,袋式除尘器进出口各形态Hg质量浓度及脱除效率如图7所示,可以看出,袋式除尘器入口气态Hg、颗粒Hg和总Hg质量浓度分别为1.12、12.68、13.80 μg/m3,出口气态Hg、颗粒Hg和总Hg质量浓度分别为0.200、0.015、0.215 μg/m3,对应的脱除效率分别为82.14%、99.88%、98.44%,与文献[22]结果基本一致。

图7

图7   袋式除尘器脱Hg性能

Fig. 7   Hg removal performance of fabric filter


为进一步分析数据的可信度,根据物料守恒原则,计算每小时Hg的输入量和输出量[32-33],其中,Hg的输入量Fin取决于煤的消耗量mcoal及煤中Hg含量ccoal,计算公式如下:

Fin=mcoal×ccoal

对于Hg的输出量Fout,这里涉及炉渣、粉煤灰和烟气中的Hg,计算公式如下:

Fout=mslag×cslag+mash×cash+qgas×cgas

式中:mslagmash分别为单位时间产生的炉渣、粉煤灰量,kg/h;qgas为袋式除尘器出口烟气量,m3/h;cslagcash分别为炉渣、粉煤灰中的Hg含量,mg/kg;cgas为袋式除尘器出口烟气中总Hg质量浓度,mg/m3

定义Hg在各个输出单元的分布系数ηi

ηi=(Fouti/Fin)×100%

式中Fouti为输出单元i单位时间的输出量,mg/h。

Fouti=Fout时,η即为整个系统的平衡系数。经计算,炉渣、粉煤灰和烟气中的Hg对应的分布系数分别为0.05%、90.90%和0.43%,主要集中在粉煤灰中,整个系统的平衡系数为91.38%,数据可信度较高,对应计算结果如图6所示。

4 结论

1)根据机理分析,袋式除尘器在高效除尘的同时会脱除绝大部分的颗粒Hg,滤袋表面沉积的一层粉饼层对气态Hg等污染物也具有很强的过滤吸附效果。

2)燃煤电厂袋式除尘器对气态Hg的脱除效率差异较大,在7.24%~92.66%,推测主要是与入口气态Hg浓度和飞灰中未燃尽碳的含量有关,对颗粒Hg、总Hg的脱除效率分别在95.9%~100%和28.03%~97.07%;燃煤电厂电袋复合除尘器对各类形态Hg的脱除效果与袋式除尘器相当,对气态Hg、颗粒Hg、总Hg的脱除效率分别在3.38%~99.93%、86.83%~100%和14.09%~99.52%;水泥厂袋式除尘器对各类形态Hg的脱除效果略低于燃煤电厂,对气态Hg、颗粒Hg、总Hg的脱除效率分别在8.17%~87.5%、95.42%~100%和23.43%~99.48%。

3)根据工程实测,袋式除尘器对气态Hg、颗粒Hg和总Hg脱除效率分别为82.14%、99.88%和98.44%,经计算,炉渣、粉煤灰和烟气中Hg对应的分布系数分别为0.05%、90.90%和0.43%,主要集中在粉煤灰中,整个系统的平衡系数为91.38%,数据可信度较高。

参考文献

BRUNO J C CRAFAEL SVÁDILA G Get al

Hybrid air filters:a review of the main equipment configurations and results

[J].Process Safety and Environmental Protection,20202365193-207doi:10.1016/j.psep.2020.07.025

[本文引用: 1]

王玉红姚群陈志炜

我国袋式除尘行业技术新进展

[J].工业安全与环保,202046(6):65-70doi:10.3969/j.issn.1001-425X.2020.06.016

WANG Y HYAO QCHEN Z W

New technology development of bag filters in China

[J].Industrial Safety and Environmental Protection,202046(6):65-70doi:10.3969/j.issn.1001-425X.2020.06.016

姚群宋七棣陈志炜

2019年袋式除尘行业发展评述及展望

[J].中国环保产业,202051(2):19-22

YAO QSONG Q DCHEN Z W

Review and prospect of the development of bag-hose precipitation industry in 2019 new technology development of bag filters in China

[J].China’s Environmental Protection Industry,202051(2):19-22

郑青

袋式除尘技术发展回顾和展望

[J].水泥,2016(3):45-48

[本文引用: 1]

ZHENG Q

Review and prospect of bag dust removal technology

[J].Cement,2016(3):45-48

[本文引用: 1]

北京智研科信咨询有限公司

2018年中国除尘器应用结构、袋式除尘器及静电除尘器发展现状分析

[EB/OL].(2019-12-27)[2022-02-01].. doi:10.1145/511446.511470

[本文引用: 1]

Beijing Zhiyan Kexin Consulting Co.,Ltd.

Analysis of application structure,bag dust collector and electrostatic precipitator development status in China in 2018

[EB/OL].(2019-12-27)[2022-02-01].. doi:10.1145/511446.511470

[本文引用: 1]

王丹丹钱付平夏勇军

基于故障树分析法袋式除尘器滤袋失效的研究与应用

[J].环境工程学报,201610(6):3118-3124doi:10.12030/j.cjee.201501135

[本文引用: 1]

WANG D DQIAN F PXIA Y Jet al

Study and application of bags’ failure in bag filter using fault tree analysis method

[J].Chinese Journal of Environmental Engineering,201610(6):3118-3124doi:10.12030/j.cjee.201501135

[本文引用: 1]

陶晖陶岚

袋式除尘技术在我国燃煤电厂的推广应用

[J].中国环保产业,201551(1):15-21doi:10.3969/j.issn.1006-5377.2015.01.003

TAO HTAO L

Popularization and application of bag hose precipitating technology in China coal-fired power plant

[J].China’s Environmental Protection Industry,201551(1):15-21doi:10.3969/j.issn.1006-5377.2015.01.003

聂雪丽

基于含尘烟气超低排放用袋式除尘滤料织物构造特性研究及应用

[D].上海东华大学2018

NIE X L

Research and application on characteristics of filter media with bag filter based on ultra low emission of dust-laden flue gas

[D].ShanghaiDonghua University2018

NIE XSHEN HWANG Yet al

Investigation of the pyrolysis behaviour of hybrid filter media for needle-punched nonwoven bag filters

[J].Applied Thermal Engineering,2017113705-713doi:10.1016/j.applthermaleng.2016.11.045

刘美玲沈敏超刘含笑

高温除尘用金属纤维滤料的性能研究

[J].发电技术,202243(2):362-366doi:10.12096/j.2096-4528.pgt.19181

[本文引用: 1]

LIU M LSHEN M CLIU H Xet al

Study on the performance of metal fiber filter for high temperature dust removal

[J].Power Generation Technology,202243(2):362-366doi:10.12096/j.2096-4528.pgt.19181

[本文引用: 1]

陈招妹刘含笑崔盈

燃煤电厂烟气中Hg的生成、治理、测试及排放特征研究火电厂

[J].发电技术,201940(4):355-361

[本文引用: 1]

CHEN Z MLIU H XCUI Yet al

Study on generation,treatment,testing and emission characteristics of Hg in flue gas of coal-fired power plants

[J].Power Generation Technology,201940(4):355-361

[本文引用: 1]

WANG S MZHANG Y SGU Y Zet al

Using modified fly ash for mercury emissions control for coal-fired power plant applications in China

[J].Fuel,20161811230-1237doi:10.1016/j.fuel.2016.02.043

ZHANG Y SSHANG P FWANG J Wet al

Trace element (Hg,As,Cr,Cd,Pb) distribution and speciation in coal-fired power plants

[J].Fuel,2017208647-654doi:10.1016/j.fuel.2017.07.064

[本文引用: 1]

刘含笑陈招妹王伟忠

燃煤电厂烟气Hg排放特征及其吸附脱除技术研究进展

[J].环境工程,201937(8):128-133

[本文引用: 1]

LIU H XCHEN Z MWANG W Zet al

Study on Hg emission characteristics and mercury adsorption removal technology of flue gas in coal-fired power plants

[J].Environmental Engineering,201937(8):128-133

[本文引用: 1]

ZHANG Y SZHANG Z SZHAO Let al

Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash

[J].Fuel,2017200427-434doi:10.1016/j.fuel.2017.03.095

[本文引用: 1]

顾永正王树民

改性燃煤飞灰吸附氧化脱汞机理研究进展

[J].化工进展,201736(11):4257-4264

[本文引用: 1]

GU Y ZWANG S M

Research progress of mercury adsorption and oxidation mechanism on modified coal-fired fly ash

[J].Chemical Industry and Engineering Progress,201736(11):4257-4264

[本文引用: 1]

WU Q RWANG S XLI G Let al

Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014

[J]. Environmental Science & Technology,20165013428-13435doi:10.1021/acs.est.6b04308

[本文引用: 1]

郑逸武段钰锋汤红健

燃煤烟气污染物控制装置协同脱汞特性研究

[J].中国环境科学,201838(3):862-870doi:10.3969/j.issn.1000-6923.2018.03.009

[本文引用: 1]

ZHENG Y WDUAN Y FTANG H Jet al

Characteristics of the existing air pollutant control devices on Hg synergistic removal in a coal-fired power plant

[J].China Environmental Sciences,201838(3):862-870doi:10.3969/j.issn.1000-6923.2018.03.009

[本文引用: 1]

GOODARZI F

Characteristics and composition of fly ash from Canadian coal-fired power plants

[J].Fuel,200685(10/11):1418-1427doi:10.1016/j.fuel.2005.11.022

[本文引用: 1]

CHIEN P CCHUN CTIEN C Cet al

Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes

[J].Journal of the Air & Waste Management Association,20201581-35doi:10.1080/10962247.2020.1860158

[本文引用: 2]

曹晓满张军梅汪远

不同超低排放技术路线的燃煤电站汞脱除研究

[J].环境科学与技术,202043(10):194-199

CAO X MZHANG J MWANG Yet al

Removing mercury from flue gas of coal-fired power plants by different ultra-low emission technical routes

[J].Environmental Science & Technology,202043(10):194-199

王运军段钰锋杨立国

燃煤电站布袋除尘器和静电除尘器脱汞性能比较

[J].燃料化学学报,200836(1):23-29doi:10.3969/j.issn.0253-2409.2008.01.005

[本文引用: 1]

WANG Y JDUAN Y FYANG L Get al

Comparison of mercury removal characteristic between fabric filter and electrostatic precipitators of coal-fired power plants

[J].Journal of Fuel Chemistry and Technology,200836(1):23-29doi:10.3969/j.issn.0253-2409.2008.01.005

[本文引用: 1]

许月阳薛建明王宏亮

燃煤烟气常规污染物净化设施协同控制汞的研究

[J].中国电机工程学报,201434(23):3924-3931

[本文引用: 2]

XU Y YXUE J MWANG H Let al

Research on mercury collaborative control by conventional pollutants purification facilities of coal-fired power plants

[J].Proceedings of the CSEE,201434(23):3924-3931

[本文引用: 2]

陈奎续

基于实测的电袋复合除尘器脱除多污染物效果

[J].环境科学研究,201730(6):937-942

[本文引用: 2]

CHEN K X

Removal of multi-pollutants from coal-fired flue gas by electrostatic-fabric integrated precipitator based on field tests

[J].Research of Environmental Sciences,201730(6):937-942

[本文引用: 2]

陈磊

350 MW超低排放燃煤电厂汞排放特性试验研究

[D].南京东南大学2019doi:10.1016/b978-0-08-102418-8.00005-x

CHEN L

Experimental study on mercury emission characteristics of 350 MW ultra-low emission coal-fired power plant

[D].NanjingSoutheast University2019doi:10.1016/b978-0-08-102418-8.00005-x

于丽新曲莹军贾俊新

基于实测的燃煤电厂汞迁移转化规律研究分析

[J].环境科学与技术,201437(S2):463-466

[本文引用: 2]

YU L XQU Y JJIA J Xet al

Study and analysis of mercury migration and transformation from coal-fired power plants based on field tests

[J].Environmental Science & Technology,201437(S2):463-466

[本文引用: 2]

王小龙

水泥生产过程中汞的排放特征及减排潜力研究

[D].杭州浙江大学2017

[本文引用: 2]

WANG X L

Study on mercury emission characteristics and emission reduction potential in cement production

[D].HangzhouZhejiang University2017

[本文引用: 2]

王小龙王小峰周启昕

水泥生产线布袋除尘器和静电除尘器脱汞性能比较

[J].水泥,2018(4):54-59

[本文引用: 2]

WANG X LWANG X FZHOU Q Xet al

Comparison of mercury removal performance between cloth bag dust collector and electrostatic dust collector in cement production line

[J].Cement,2018(4):54-59

[本文引用: 2]

LI YDANG L XYANG Het al

Removal of elemental mercury in flue gas by Cu-Fe modified magnetosphere from coal combustion fly ash

[J].Fuel,2020271117668doi:10.1016/j.fuel.2020.117668

[本文引用: 1]

王家伟张永生张翼

喷射点位及温度对超低排放电厂活性炭吸附脱汞的影响

[J].中国电机工程学报,201939(11):3303-3311

[本文引用: 1]

WANG J WZHANG Y SZHANG Yet al

Effects of temperature and residence time on mercury control using activated carbon injection in ultra-low emission coal-fired power plant

[J].Proceedings of the CSEE,201939(11):3303-3311

[本文引用: 1]

李晓航刘红刚路建洲

煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制

[J].化工学报,201970(11):4397-4409

[本文引用: 1]

LI X HLIU H GLU J Zet al

Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler

[J].CIESC Journal,201970(11):4397-4409

[本文引用: 1]

陈自祥王儒威孙若愚

淮南燃煤电厂汞分配、富集与释放通量

[J].环境化学,201837(2):193-199doi:10.7524/j.issn.0254-6108.2017072101

[本文引用: 1]

CHEN Z XWANG R WSUN R Yet al

Distribution and enrichment of mercury in utility boiler of Huainan coal-fired power plant

[J].Environmental Chemistry,201837(2):193-199doi:10.7524/j.issn.0254-6108.2017072101

[本文引用: 1]

LIU X LWANG S XZHANG Let al

Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China

[J].Fuel,2013111(9):621-627doi:10.1016/j.fuel.2013.03.052

[本文引用: 1]

/