发电技术

• •    下一篇

基于大语言模型的电力系统预测技术研究综述

张祖菡1,刘敦楠1,凡航1*,杨柳青1,段赟杰1,李赟1,马振宇2   

  1. 1.华北电力大学,经济与管理学院,北京市 昌平区,102206;2.国家电投集团数字科技有限公司,北京市 昌平区,102209
  • 基金资助:
    国家自然科学基金项目(72171082);中央高校基金

Research Overview of Power System Forecasting Technology Based on Large Language Models

ZHANG Zuhan1, LIU Dunnan1, FAN Hang1*, YANG Liuqing1, DUAN Yunjie1, LI Yun1, MA Zhenyu2   

  1. 1. School of Economics and Management, North China Electric Power University, Changping District, Beijing 10220, China; 2. State Power Investment Group Digital Technology Co., Ltd., Changping District, Beijing 102209, China
  • Supported by:
    National Natural Science Foundation of China (72171082); Central University Fund.

摘要: 【目的】随着大规模新能源入网,新型电力系统不仅对预测技术要求更高的精确性,同时也提出了一定灵活性需求,传统预测方法在处理动态复杂的场景下存在一定局限,因此,需要研究适应于新型电力系统的预测技术。【方法】大语言模型(large language model,LLM)是一种基于生成式人工智能的技术,具有处理多模态数据、少样本学习、多任务处理的能力。因此,本文首先对LLM的基本架构、训练方法及其应用现状进行阐释,随后说明了其应用在预测领域的原理及实现过程。并重点探讨了在电力负荷预测、新能源出力预测和电价预测方面的优势和潜力潜力。最后,从数据质量管理、隐私保护、及计算资源三方面分析了LLM目前在预测应用中存在的问题,并给出了可行的解决思路。【结果】经综述不同预测任务及对比研究分析,与传统预测方法相比,LLM在数据处理和多模态任务中的强大能力更适应于处理复杂多变的预测场景。【结论】对其合理有效的应用能够为电力市场预测提供新的解决方案。

关键词: 大语言模型(LLM), 人工智能技术, 负荷预测, 电价预测, 新能源出力预测, 隐私保护

Abstract: [Objectives] With the integration of large-scale new energy sources into the grid, the new power system not only demands higher accuracy in forecasting technology but also requires certain flexibility. Traditional forecasting methods have certain limitations when dealing with dynamically complex scenarios. Therefore, it is necessary to study forecasting technologies that are suitable for the new power system. [Methods] Large language model (LLM) are a type of generative artificial intelligence technology, capable of processing multimodal data, few-shot learning, and multitasking. Therefore, this paper first explains the basic architecture, training methods, and current applications of LLMs, and then describes the principles and implementation process of their application in the forecasting field. It focuses on discussing the advantages and potential of LLMs in aspects such as electric load forecasting, new energy output forecasting, and electricity price forecasting. Finally, it analyzes the existing problems of LLMs in forecasting applications from three aspects: data quality management, privacy protection, and computational resources, and provides feasible solutions. [Results] After reviewing different forecasting tasks and comparative research analysis, compared with traditional forecasting methods, LLMs' strong capabilities in data processing and multitasking are more suitable for handling complex and variable forecasting scenarios. [Conclusions] The rational and effective application of LLMs can provide new solutions for power market forecasting.

Key words: large language model (LLM), artificial intelligence technology, load forecasting;?electricity price forecasting, new energy output forecasting, privacy protection