发电技术 ›› 2022, Vol. 43 ›› Issue (1): 19-31.DOI: 10.12096/j.2096-4528.pgt.21083
闫红艳1,2, Kwon Hwang Jin2, 高艳丰1
收稿日期:
2021-06-18
出版日期:
2022-02-28
发布日期:
2022-03-18
作者简介:
基金资助:
Hongyan YAN1,2, Jin Kwon HWANG2, Yanfeng GAO1
Received:
2021-06-18
Published:
2022-02-28
Online:
2022-03-18
Supported by:
摘要:
低频振荡是影响互联电力系统安全稳定运行的关键问题之一,提出采用变分模态分解(variational mode decomposition,VMD)提取类噪声数据的低频振荡信号,基于离散傅里叶变换(discrete Fourier transform,DFT)曲线拟合的电力系统低频振荡模态辨识方法。首先,采用VMD分解滤除类噪声数据信号中的直流分量,提取出低频振荡信号,利用模态相关系数确定VMD分解个数,提高了信号分解的时效性;其次,建立类噪声数据自回归滑动平均(auto regressive moving average,ARMA)数学模型,模拟产生数据信号,利用低频振荡信号自相关函数的DFT曲线拟合估计拉普拉斯变换系数,提取机电振荡特征参数;最后,采用模拟数据和某实测相量测量单元数据验证了该方法的可行性和有效性。试验表明,采用VMD算法和基于DFT的曲线拟合法提取低频振荡特征参数,有效提高了机电小干扰稳定评估的实时性。
中图分类号:
闫红艳, Kwon Hwang Jin, 高艳丰. 基于类噪声数据的电力系统低频振荡模态参数辨识[J]. 发电技术, 2022, 43(1): 19-31.
Hongyan YAN, Jin Kwon HWANG, Yanfeng GAO. Modal Parameter Identification of Low Frequency Oscillation in Power System Based on Ambient Data[J]. Power Generation Technology, 2022, 43(1): 19-31.
DC 趋势项 | 数值 |
---|---|
1/Ks(幅值) | 0.3 |
Ksf0 /(2J) | 0.2 |
表1 模拟直流分量的参数
Tab. 1 Parameters of the analog DC component
DC 趋势项 | 数值 |
---|---|
1/Ks(幅值) | 0.3 |
Ksf0 /(2J) | 0.2 |
k | fk /Hz | ζk | γk |
---|---|---|---|
1 | 0.3 | 0.07 | 0.4 |
2 | 0.5 | 0.05 | 0.5 |
表2 低频振荡分量的参数
Tab. 2 Parameters of low-frequency oscillation components
k | fk /Hz | ζk | γk |
---|---|---|---|
1 | 0.3 | 0.07 | 0.4 |
2 | 0.5 | 0.05 | 0.5 |
模态个数 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
最大相关系数 | 0.003 0 | 0.061 2 | 0.124 1 | 0.147 6 |
表3 不同K值的最大相关系数
Tab. 3 Maximum correlation coefficients of K different values
模态个数 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
最大相关系数 | 0.003 0 | 0.061 2 | 0.124 1 | 0.147 6 |
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 SNR=30 dB | 1 | 0.296 8 | 0.072 7 | 0.487 1 | 78.910 0 | 12.358 0 |
2 | 0.500 6 | 0.051 3 | 0.261 3 | 95.591 0 | 13.455 7 | |
MEYW方法 SNR=30 dB | 1 | 0.304 6 | 0.061 3 | 0.430 3 | 73.776 0 | 10.548 1 |
2 | 0.504 8 | 0.058 5 | 0.181 9 | 102.673 3 | 12.909 1 | |
本文算法 SNR=10 dB | 1 | 0.295 4 | 0.070 8 | 0.611 7 | 86.660 2 | 11.351 7 |
2 | 0.503 4 | 0.046 7 | 0.312 5 | 99.217 9 | 12.765 3 | |
MEYW方法 SNR=10 dB | 1 | 0.305 2 | 0.054 0 | 0.489 6 | 82.909 7 | 10.840 1 |
2 | 0.505 5 | 0.037 4 | 0.220 3 | 97.576 4 | 11.890 3 |
表4 模拟数据的辨识结果
Tab. 4 Identification results of simulated data
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 SNR=30 dB | 1 | 0.296 8 | 0.072 7 | 0.487 1 | 78.910 0 | 12.358 0 |
2 | 0.500 6 | 0.051 3 | 0.261 3 | 95.591 0 | 13.455 7 | |
MEYW方法 SNR=30 dB | 1 | 0.304 6 | 0.061 3 | 0.430 3 | 73.776 0 | 10.548 1 |
2 | 0.504 8 | 0.058 5 | 0.181 9 | 102.673 3 | 12.909 1 | |
本文算法 SNR=10 dB | 1 | 0.295 4 | 0.070 8 | 0.611 7 | 86.660 2 | 11.351 7 |
2 | 0.503 4 | 0.046 7 | 0.312 5 | 99.217 9 | 12.765 3 | |
MEYW方法 SNR=10 dB | 1 | 0.305 2 | 0.054 0 | 0.489 6 | 82.909 7 | 10.840 1 |
2 | 0.505 5 | 0.037 4 | 0.220 3 | 97.576 4 | 11.890 3 |
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 | 1 | 0.319 5 | 0.049 40 | 0.885 2 | 89.987 9 | 15.626 3 |
2 | 0.675 3 | 0.135 1 | 0.323 8 | 112.821 0 | 12.260 1 | |
MEYW法 | 1 | 0.319 3 | 0.063 7 | 0.982 4 | 93.850 4 | 14.963 0 |
2 | 0.667 4 | 0.098 7 | 0.266 7 | 113.287 0 | 11.762 7 |
表5 实测数据辨识结果
Tab. 5 Identification results of measured data
算法 | 模态 | ζk | SNRe | |||
---|---|---|---|---|---|---|
本文算法 | 1 | 0.319 5 | 0.049 40 | 0.885 2 | 89.987 9 | 15.626 3 |
2 | 0.675 3 | 0.135 1 | 0.323 8 | 112.821 0 | 12.260 1 | |
MEYW法 | 1 | 0.319 3 | 0.063 7 | 0.982 4 | 93.850 4 | 14.963 0 |
2 | 0.667 4 | 0.098 7 | 0.266 7 | 113.287 0 | 11.762 7 |
1 | 李青兰,吴琛,陈磊,等 .抑制频率振荡的电力系统稳定器参数优化[J]. 电力系统自动化,2020,44(7):93-98. doi:10.7500/AEPS20190803005 |
LI Q L, WU C, CHEN L,et al .Parameter optimization of power system stabilizer for suppressing frequency oscillation[J].Automation of Electric Power Systems,2020,44(7):93-98. doi:10.7500/AEPS20190803005 | |
2 | 张虹,王迎丽,勇天泽,等. 基于IEWT和噪能转移SR-MLS反演识别技术的低频振荡信号分析[J].电网技术,2019,38(1):1-10. |
ZHANG H, WANG Y L, YONG T Z,et al .Analysis of low frequency oscillatory signals by IEWT and energy transfer SR-MLS inversion recognition techniques[J].Power System Technology,2019,38(1):1-10. | |
3 | 丁仁杰,沈钟婷 .基于 EMO-EDSNN 的电力系统低频振荡模态辨识[J].电力系统自动化,2020,44(3):122-130. |
DING R J, SHEN Z T .Power system low frequency oscillation mode identification based on exact mode order-exponentially damped sinusoids neural network[J].Automation of Electric Power Systems,2020,44(3):122-130. | |
4 | 肖怀硕,贾梧桐,肖冰莹,等 .基于改进变分模态分解的低频振荡模式辨别[J].电力工程技术,2020,39(2):95-102. |
XIAO H S, JIA W T, XIAO B Y,et al .An identification method for power system low-frequency oscillation based on parameter optimized variational mode decomposition[J].Electric Power Engineering Technology,2020,39(2):95-102. | |
5 | 习工伟,胡涛,朱艺颖,等 .基于新型交直流协调控制抑制电力系统低频振荡的仿真试验[J].电网与清洁能源,2019,35(4):8-15. doi:10.3969/j.issn.1674-3814.2019.04.002 |
XI G W, HU T, ZHU Y Y,et al .Simulation test of low frequency oscillation suppression in power system based on new AC-DC coordinated control[J].Power System and Clean Energy,2019,35(4):8-15. doi:10.3969/j.issn.1674-3814.2019.04.002 | |
6 | HWANG J K, LIU Y L. Discrete Fourier transform-based parametric modal identification from ambient data of the power system frequency[J].IET Generation Transmission Distribution,2016,10(1):213-220. doi:10.1049/iet-gtd.2015.0699 |
7 | HWANG J K, LIU Y .Noise analysis of power system frequency estimated from angle difference of discrete Fourier transform coefficient[J].IEEE Transactions Power Delivery,2014,29(4):1533-1541. doi:10.1109/tpwrd.2014.2315618 |
8 | 于笑,陈武晖 .风力发电并网系统次同步振荡研究[J].发电技术,2018,39(4):304-312. doi:10.12096/j.2096-4528.pgt.2018.047 |
YU X, CHEN W H .Review of subsynchronous oscillation induced by wind power generation integrated system [J].Power Generation Technology,2018,39(4):304-312. doi:10.12096/j.2096-4528.pgt.2018.047 | |
9 | 吴涛,梁浩,谢欢,等 .励磁系统控制关键技术与未来展望[J].发电技术,2021,42(2):160-170. doi:10.12096/j.2096-4528.pgt.21007 |
WU T, LIANG H, XIE H,et al .Key technologies and future prospects of excitation system control[J].Power Generation Technology,2021,42(2):160-170. doi:10.12096/j.2096-4528.pgt.21007 | |
10 | 和萍,申润杰,祁盼,等 .四种FACTS装置对改善风光互补系统稳定性的研究[J].智慧电力,2020,48(7):65-72. doi:10.3969/j.issn.1673-7598.2020.07.010 |
HE P, SHEN R J, QI P,et al .Four kinds of FACTS devices to improve the stability of wind-solar complementary system[J].Smart Power,2020,48(7):65-72. doi:10.3969/j.issn.1673-7598.2020.07.010 | |
11 | 潘学萍 .电力系统低频振荡[M].北京:中国水利水电出版社,2013:123-125. |
PAN X P .Low frequency oscillation of power system[M].Beijing:China Water Power Press,2013:123-125. | |
12 | 孙英云,游亚雄,侯建兰,等 .基于差分正交匹配追踪和 Prony算法的低频振荡模态辨识[J].电力系统自动化,2015,39(10):69-74. |
SUN Y Y, YOU Y X, HOU J L,et al .Identification of lowfrequency oscillation mode based on difference orthogonal matchingpursuit and Prony algorithm[J].Electric Power Automation Equipment,2015,39(10):69-74. | |
13 | 张 程,金 涛 .基于ISPM和SDM-Prony算法的电力系统低频振荡模式识别[J].电网技术,2016,40(4):1209-1216. |
ZHANG C, JIN T .Identification of low frequency oscillations in power systems using an improved smoothness priors method and second-derivative method-Prony[J].Power System Technology,2016,40(4): 1209-1216. | |
14 | YANG J Z, LIU C W, WU W G .A hybrid method for the estimation of power system low-frequency oscillation parameters[J].IEEE Transactions of Power System,2007,22(4):2115-2123. doi:10.1109/tpwrs.2007.907405 |
15 | RUEDA J L, JUÁREZ C A, ERLICH I .Wavelet-based analysis of power system low-frequency electromechanical oscillations[J].IEEE Transactons of. Power System,2011,26(3):1733-1743. doi:10.1109/tpwrs.2010.2104164 |
16 | Zadrozny P A .Extended Yule-Walker identification of VARMA models with singleor mixed-frequency data[J]. Journal of Econometrics,2016,193:438-446. doi:10.1016/j.jeconom.2016.04.017 |
17 | WIES R W, PIERRE J W, TRUNDNOWSKI D J .Use of least-mean squares (LMS) adaptive filtering technique for estimating low-frequency electromechanical modes in power systems[C]//IEEE Power Engineering Society General Meeting,2002:4867-4873. doi:10.1109/acc.2002.1025429 |
18 | ZHOU N, PIERRE J W, TRUNDNOWSKI D J,et al .Robust RLS methods for online estimation of power system electromechanical modes[J].IEEE Transactions of Power System,2007,22(3):1240-1249. doi:10.1109/tpwrs.2007.901104 |
19 | 董飞飞,刘涤尘,涂炼,等 .基于MM-ARMA算法的次同步振荡模态参数辨识[J].高电压技术,2013,39(5):1252-1257. doi:10.3969/j.issn.1003-6520.2013.05.034 |
DONG F F, LIU D C, TU L,et al .Subsynchronous oscillation modal parameter identification based on MM-ARMA algorithm[J].High Voltage Engineering, 2013,39(5):1252-1257. doi:10.3969/j.issn.1003-6520.2013.05.034 | |
20 | 耿海璇,张济民 .基于Yule-Walker AR方法的振动信号除噪研究[J].机电一体化,2016(1):34-37. doi:10.1115/imece2016-65487 |
GENG H X, ZHANG J M .A Study on vibration signal based on Yule-Walker AR method[J].Mechatronics,2016(1):34-37. doi:10.1115/imece2016-65487 | |
21 | ANDERSON M G, ZHOU N, PIERRE J W,et al .Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data[J].IEEE Transactions of Power System,2005,20(2):943-950. doi:10.1109/tpwrs.2005.846125 |
22 | 吴超,陆超,韩英铎,等 .基于类噪声信号和 ARMA-P 方法的振荡模态辨识[J].电力系统自动化,2020,34(6):1-6. |
WU C, LU C, HAN Y D,et al .Identification of mode shape based on ambient signals and ARMA-P method[J].Automation of Electric Power Systems,2020,34(6):1-6. | |
23 | 杨德友,王文嘉,高际惟,等. 随机数据驱动下的机电振荡参数在线提取与阻尼调制(一):基于 ORSSI 的模态参数在线辨识[J].中国电机工程学报,2018, 38(8):2253-2261. |
YANG D Y, WANG W J, GAO J W,et al .On-line electromechanical oscillation analysis and damping modulation for power system using ambient data (part I): modal parameters identification based on ORSSI[J].Proceedings of the CSEE,2018,38(8):2253-2261. | |
24 | 杨德昌, REHTANZ C,李勇,等 .基于改进希尔伯特-黄变换算法的电力系统低频振荡分析[J].中国电机工程学报,2011,31(10):102-108. |
YANG D C, REHTANZ C, LI Y,et al .Researching on low frequency oscillation in power system based on improved HHT algorithm[J].Proceedings of the CSEE,2011,31(10):102-108. | |
25 | 朱永利,王刘旺 .并行 EEMD 算法及其在局部放电信号特征提取中的应用[J].电工技术学报,2018,33(11):2508-2518. |
ZHU Y L, WANG L W .Parallel ensemble empirical mode decomposition and its application in feature extraction of partial discharge signals[J].Transactions of China Electrotechnical Society,2018,33(11):2508-2518. | |
26 | DRAGOMIRETSKIY K, ZOSSO D .Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014,62(3):531-544. doi:10.1109/tsp.2013.2288675 |
27 | 郑小霞,陈广宁,任浩翰,等 .基于改进VMD和深度置信网络的风机易损部件故障预警[J].振动与冲击,2019,38(8):153-160. |
ZHENG X X, CHEN G N, REN H H,et al .Fault detection of vulnerable units of wind turbine based on improved VMD and DBN[J].Journal of Vibration and Shock,2019,38(8):153-160. | |
28 | PIERRE J W, TRUDNOWSKI D J, DONNELLY M K .Initial results in lectromechanical mode identification from ambient data[J].IEEE Transactions of Power System,1997,12(3):1245-1251. doi:10.1109/59.630467 |
29 | INOUE T, TANIGUCHI N, IKEGUCHI Y,et al .Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients[J].IEEE Transactions of Power System,1997, 12(1):136-143. doi:10.1109/59.574933 |
30 | 李东辉,臧晓明,鞠平,等. 电力系统频率响应的改进模型与参数估计[J].电力工程技术,2019,38(5):85-90. |
LI D H, ZANG X M, JU P,et al .The improved model and parameter estimation for frequency response of power system[J].Electric Power Engineering Technology,2019,38(5):85-90. | |
31 | KAKIMOTO N, SUGUMI M, MAKINO T,et al .Monitoring of interarea oscillation mode by synchronized phasor measurement[J].IEEE Transactions of Power System,2006,21(1): 260-268. doi:10.1109/tpwrs.2005.861960 |
32 | 奥本海默 .信号与系统[M].西安:西安交通大学出版社,1999:156-157. |
OPPENHEIM A V.Signals and systems[M].Xi’an:Xi’an Jiaotong University Press,1999:156-157. | |
33 | 张俊甲,马增强,王梦奇,等 .基于VMD与自相关分析的滚动轴承故障特征提取[J].电子测量与仪器学报,2017,31(9):1372-1378. |
ZHANG J J, MA Z Q, WANG M Q,et al .Fault feature extraction of rolling bearing based on VMD and autocorrelation analysis[J].Journal of Electronic Measurement and Instrumentation,2017,31(9): 1372-1378. | |
34 | 胡楠,李兴源,李宽,等 .基于CCF-TLS-ESPRIT算法的低频振荡在线辨识[J].物理学报,2014,63(6):316-324. doi:10.7498/aps.63.068401 |
HU N, LI X Y, LI K,et al .Online identification of low frequency oscillation based on CCF-TLS-ESPRIT algorithm[J].Acta Physica Sinica,2014,63(6):316-324. doi:10.7498/aps.63.068401 |
[1] | 付红军, 朱劭璇, 王步华, 谢岩, 熊浩清, 唐晓骏, 杜晓勇, 李程昊, 李晓萌. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[2] | 马世英,王青. 大规模新能源集中外送系统源网协调风险及仿真评估[J]. 发电技术, 2018, 39(2): 112-117. |
[3] | 王建国,林语桐,田野,杜鹏,张培焱,辛红伟,武英杰. 基于VMD与不同包络阶次构造的风电机组滚动轴承故障诊断[J]. 发电技术, 2018, 39(1): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||