发电技术

• •    下一篇

双面光伏系统的光-热-电性能分析模型与实验验证

李建勇1,郎泽萌1,王重阳2,赵海亮1,蒋成伟1,徐瑞玲2,胡曦3,孟庆茂2,李怀森2,徐世杰4,吴双应4
  

  1. 1.中广核新能源六安有限公司,六安市霍邱县,237494;2.上海白鹭新能源有限公司,上海市崇明区,2021542;3.中广核新能源控股有限公司,北京市丰台区,100070;4.重庆大学能源与动力工程学院,重庆市沙坪坝区,400044
  • 基金资助:
    国家自然科学基金项目(51966003);中广核新能源科技项目(S-Y2023CAE)。

Analytical Modelling and Experimental Validation of Optical-Thermal-Electrical Performance for Bifacial Photovoltaic Systems

LI Jianyong1, LANG Zemeng1, WANG Chongyang2, ZHAO Hailiang1, JIANG Chengwei1, XU Ruiling2, HU Xi3, MENG Qingmao2, LI Huaisen2, XU Shijie4, WU Shuangying4#br#   

  1. 1. CGN New Energy Lu'an Co., Ltd, Huoqiu County, Lu'an 237494, China; 2. Shanghai Bailu New Energy Co., Ltd, Chongming District, Shanghai 202154, China; 3. CGN New Energy Holding Co.,Ltd, Fengtai District, Beijing 100070, China; 4. School of Energy and Power Engineering, Chongqing University, Shapingba District, Chongqing 400044, China
  • Supported by:
    Project Supported by National Natural Science Foundation (51966003); CGN New Energy Technology Project (S-Y2023CAE).

摘要: 【目的】双面光伏(bifacial photovoltaic, BPV)可提供背面增益,具有较好的发展前景,但如何实现在耦合环境下对BPV系统性能进行准确分析已成为亟待解决的问题之一。为此,提出了一个光-热-电-环境耦合(optical-thermal-electrical-environmental coupling, OTEEC)模型来探究BPV板在真实环境下的光-热-电性能。【方法】首先,基于蒙特卡洛射线追踪法模拟光线在BPV系统中的传播路径,获得BPV板正背面非均匀辐照分布;然后分别通过有限体积法和离散积分法计算系统的热-电性能;最后通过实验对模型进行了验证,同时和现有的光-热-电耦合(optical-thermal-electrical coupling, OTEC)模型进行了比较。【结果】在有云和晴天时,基于OTEEC模型获得的BPV板正背面辐照分布与实验的最大相对误差均小于13%。在有云无风和晴天有风下,基于OTEEC模型获得的温度数据和瞬时电功率与实验的最大相对误差均小于11%。在有风和无风时,OTEEC模型的计算精度高于现有的OTEC模型,证明了OTEEC模型具有较好的普适性和可信度。【结论】提出的OTEEC模型为BPV系统的性能提升、运行调度与管理提供科学依据。

关键词: 双面光伏(BPV)系统, 光-热-电耦合(OTEC)模型, 光-热-电-环境耦合(OTEEC)模型, 蒙特卡洛射线追踪法, 性能分析, 环境条件, 光-热-电性能, 实验验证

Abstract: [Objectives] Bifacial photovoltaic (BPV) can provide rear side gain and has good development prospects. However, how to accurately analyze the performance of BPV system under coupled environment has become one of the urgent issues to be addressed. To this end, an optical-thermal-electrical-environmental coupling (OTEEC) model was proposed to explore the optical-thermal- electrical performance in a real environment through numerical simulation. [Methods] Firstly, the propagation path of light in BPV system was simulated based on the Monte Carlo ray tracing method to obtain the non-uniform irradiation distributions on front and rear sides of BPV panel. Then the system’s thermal-electrical performance was calculated by the finite volume method and discrete integral method, respectively. Finally, OTEEC model was validated experimentally and compared with the existing optical-thermal-electrical coupling (OTEC) model. [Results] For both cloudy and sunny days, the maximum relative errors of irradiation distribution on front and rear sides of BPV panel between OTEEC model and experiments are less than 13%. The maximum relative errors of temperature data and instantaneous electric power obtained by OTEEC model and experiments respectively are less than 11% under cloudy windless day and sunny day with wind. Moreover, the computational accuracy of OTEEC model is higher than that of existing OTEC model under both windy and windless conditions, which proves that OTEEC model has better generalizability and credibility. [Conclusions] The proposed OTEEC model provides a scientific basis for the performance enhancement, operation scheduling and management of BPV systems.

Key words: BPV system, optical-thermal-electrical- coupling (OTEC) model, optical-thermal-electrical- environmental coupling (OTEEC) model, Monte Carlo ray tracing method, performance analysis, environmental conditions, optical-thermal-electrical performance, experimental verification