发电技术 ›› 2025, Vol. 46 ›› Issue (5): 939-949.DOI: 10.12096/j.2096-4528.pgt.24239

• 新能源 • 上一篇    下一篇

双面光伏系统的光-热-电性能分析模型与实验验证

李建勇1, 郎泽萌1, 王重阳2, 赵海亮1, 蒋成伟1, 徐瑞玲2, 胡曦3, 孟庆茂2, 李怀森2, 徐世杰4, 吴双应4   

  1. 1.中广核新能源六安有限公司,安徽省 六安市 237494
    2.上海白鹭新能源有限公司,上海市 崇明区 202154
    3.中广核新能源控股有限公司,北京市 丰台区 100070
    4.重庆大学能源与动力工程学院,重庆市 沙坪坝区 400044
  • 收稿日期:2024-11-14 修回日期:2024-12-19 出版日期:2025-10-31 发布日期:2025-10-23
  • 作者简介:李建勇(1972),男,硕士,高级工程师,主要从事电力工程、材料和储能技术等方面研究,295043920@qq.com
    王重阳(1995),男,博士,助理工程师,主要从事太阳能综合利用和强化换热等方面研究,cywang9910@163.com
    胡曦(1982),男,高级工程师,主要从事新能源光伏、智能监控、智慧检修等方面研究,190550443@qq.com
    吴双应(1968),男,博士,教授,博士生导师,主要从事热工理论及其工程应用、太阳能热电转换与利用等方面研究,本文通信作者,shuangyingwu@126.com
  • 基金资助:
    国家自然科学基金项目(51966003);中广核新能源科技项目(S-Y2023CAE)

Analytical Model and Experimental Validation of Optical-Thermal-Electrical Performance of Bifacial Photovoltaic Systems

Jianyong LI1, Zemeng LANG1, Chongyang WANG2, Hailiang ZHAO1, Chengwei JIANG1, Ruiling XU2, Xi HU3, Qingmao MENG2, Huaisen LI2, Shijie XU4, Shuangying WU4   

  1. 1.CGN New Energy Lu’an Co. , Ltd. , Lu’an 237494, Anhui Province, China
    2.Shanghai Bailu New Energy Co. , Ltd. , Chongming District, Shanghai 202154, China
    3.CGN New Energy Holdings Co. , Ltd. , Fengtai District, Beijing 100070, China
    4.School of Energy and Power Engineering, Chongqing University, Shapingba District, Chongqing 400044, China
  • Received:2024-11-14 Revised:2024-12-19 Published:2025-10-31 Online:2025-10-23
  • Supported by:
    National Natural Science Foundation of China(51966003);CGN New Energy Technology Project(S-Y2023CAE)

摘要:

目的 双面光伏(bifacial photovoltaic,BPV)可提供背面增益,具有较好的发展前景,但如何实现在耦合环境下对BPV系统性能进行准确分析已成为亟待解决的问题之一。为此,提出了一个光-热-电-环境耦合(optical-thermal-electrical-environmental coupling,OTEEC)模型来探究BPV板在真实环境下的光-热-电性能。 方法 首先,基于蒙特卡洛射线追踪法模拟光线在BPV系统中的传播路径,获得BPV板正背面非均匀辐照分布;然后分别通过有限体积法和离散积分法计算系统的热-电性能;最后通过实验对模型进行了验证,同时和现有的光-热-电耦合(optical-thermal-electrical coupling,OTEC)模型进行了比较。 结果 在有云和晴天时,基于OTEEC模型获得的BPV板正背面辐照分布与实验的最大相对误差均小于13%。在有云无风和晴天有风下,基于OTEEC模型获得的温度数据、瞬时电功率与实验的最大相对误差均小于11%。在有风和无风时,OTEEC模型的计算精度高于现有的OTEC模型。 结论 OTEEC模型具有较好的普适性和可信度,可为BPV系统的性能提升、运行调度与管理提供科学依据。

关键词: 双面光伏(BPV)系统, 光-热-电耦合(OTEC)模型, 光-热-电-环境耦合(OTEEC)模型, 蒙特卡洛射线追踪法, 性能分析, 环境条件, 光-热-电性能, 实验验证

Abstract:

Objectives Bifacial photovoltaic (BPV) can provide rear-side gain and has promising development prospects. However, how to accurately analyze the performance of BPV systems under coupled environmental conditions has become one of the urgent issues to be addressed. To this end, an optical-thermal-electrical-environmental coupling (OTEEC) model is proposed to explore the optical-thermal-electrical performance of BPV panels in real environments. Methods Firstly, the propagation path of light in the BPV system is simulated based on the Monte Carlo ray tracing method to obtain the non-uniform irradiation distribution on the front and rear sides of the BPV panel. Then, the system's thermal-electrical performance is calculated using the finite volume method and the discrete integral method, respectively. Finally, the model is validated through experiments and compared with the existing optical-thermal-electrical coupling (OTEC) model. Results On both cloudy and sunny days, the maximum relative errors between the irradiation distribution on the front and rear sides of the BPV panel obtained from the OTEEC model and the experimental data are less than 13%. On windless cloudy days and windy sunny days, the maximum relative errors between temperature data and instantaneous electric power obtained from the OTEEC model and the experimental results are less than 11%. Moreover, the calculation accuracy of the OTEEC model is higher than that of the existing OTEC model under both windy and windless conditions. Conclusions The OTEEC model has good universality and reliability, provides a scientific basis for the performance enhancement, operation scheduling, and management of BPV systems.

Key words: bifacial photovoltaic (BPV) system, optical-thermal-electrical coupling (OTEC) model, optical-thermal-electrical- environmental coupling (OTEEC) model, Monte Carlo ray tracing method, performance analysis, environmental conditions, optical-thermal-electrical performance, experimental validation

中图分类号: