Please wait a minute...
发电技术  2020, Vol. 41 Issue (2): 118-125    DOI: 10.12096/j.2096-4528.pgt.19139
泛在电力物联网与综合能源系统关键技术 本期目录 | 过刊浏览 |
基于仿射可调鲁棒优化的园区综合能源系统经济调度
施云辉(),郭创新(),丁筱()
Integrated Energy System Economic Dispatch Based on Affine Adjustable Robust Optimization
Yunhui SHI(),Chuangxin GUO(),Xiao DING()
全文: HTML    PDF(1711 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

新能源和负荷的不确定性给综合能源系统(integrated energy system,IES)运行带来挑战。首先,基于线性形式的能源集线器模型,对园区IES进行了建模。其次,构建了基于仿射可调鲁棒优化的园区IES两阶段经济调度模型,通过该模型可求得机组的启停及基准出力,以满足不考虑可再生能源出力的能量平衡要求,并求得机组的参与因子,使得调度方案对可再生能源出力不确定集下的任意场景均可行。最后,将该模型转化为混合整数线性规划模型(mixed integer linear programming,MILP)进行求解。算例分析结果表明:通过可调鲁棒优化的经济调度方法所求得的调度方案较经典鲁棒优化有更好的经济性与鲁棒性。

关键词 综合能源系统(IES)仿射可调鲁棒优化不确定性经济调度能源集线器    
Abstract

Uncertainties in renewable energy and loads bring challenges to the operation of integrated energy system (IES). Firstly, the general model of the industrial park's IES was established based on the linear energy hub. Then a two-stage economic dispatch model of the industrial park's IES based on the affine adjustable robust optimization was constructed. In this model, the on-off state and base power output of units were calculated to satisfy the energy balance regardless of the renewable energy output, and participation factors were obtained to ensure a feasible solution for all scenarios under the uncertainty set of the renewable energy output. Finally, the model was transformed into a mixed integer linear programming (MILP) model. The case study shows that the proposed dispatch method provides a more economical and practical scheme than the classical robust optimization.

Key wordsintegrated energy system (IES)    affine adjustable robust optimization    uncertainty    economic dispatch    energy hub
收稿日期: 2019-09-21      出版日期: 2020-04-23
ZTFLH:  TM732  
基金资助:国家自然科学基金资助项目(51877190)
作者简介: 施云辉(1994),男,博士研究生,研究方向为综合能源系统优化运行, 11610016@zju.edu.cn|郭创新(1969),男,博士,教授,博士生导师,主要研究方向为智能调度及风险调度、智能信息处理技术及其在电力系统应用的研究, guochuangxin@zju.edu.cn|丁筱(1997),女,硕士研究生,研究方向为综合能源系统优化与运行, 401051634@qq.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施云辉
郭创新
丁筱
引用本文:

施云辉,郭创新,丁筱. 基于仿射可调鲁棒优化的园区综合能源系统经济调度[J]. 发电技术, 2020, 41(2): 118-125.
Yunhui SHI,Chuangxin GUO,Xiao DING. Integrated Energy System Economic Dispatch Based on Affine Adjustable Robust Optimization. Power Generation Technology, 2020, 41(2): 118-125.

链接本文:

http://www.pgtjournal.com/CN/10.12096/j.2096-4528.pgt.19139      或      http://www.pgtjournal.com/CN/Y2020/V41/I2/118

图1  能源集线器结构
表1  工业园区中各设备的相关参数
图2  分时电价曲线
图3  冷热电负荷预测曲线
图4  光伏出力预测曲线
图5  电能优化调度结果
图6  热能优化调度结果
图7  冷能优化调度结果
图8  各转换器参与因子优化调度结果
图9  不同信息基础对目标函数值的影响
表2  不同调度策略下日运行成本比较
1 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统:述评与展望[J]. 电力系统自动化, 2018, 42 (4): 11- 24.
2 郑展, 张勇军. 电-气-热一体化混合能源系统研究评述与展望[J]. 广东电力, 2018, 31 (9): 98- 110.
3 李兵, 牛洪海, 陈俊, 等. 多能互补综合能源系统运行优化研究[J]. 分布式能源, 2018, 3 (2): 53- 57.
4 张治新, 陆青, 张世翔. 国内综合能源服务发展趋势与策略研究[J]. 浙江电力, 2019, 38 (2): 1- 6.
5 吴峰, 杨柳燕. 孤立运行模式下海岛综合能源系统的能量控制策略[J]. 电网与清洁能源, 2018, 34 (6): 53- 60.
6 贾宏杰, 穆云飞, 余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设, 2015, 36 (1): 16- 25.
7 Zidan A, Gabbar H A. Optimal scheduling of energy hubs in interconnected multi energy systems[C]//IEEE Smart Energy Grid Engineering. Oshawa, 2016: 164-169.
8 Orehounig K , Evins R , Dorer V . Integration of decentralized energy systems in neighbourhoods using the energy hub approach[J] Applied Energy, 2015, 154, 277- 289.
9 周晓倩, 余志文, 艾芊, 等. 含冷热电联供的微网优化调度策略综述[J]. 电力自动化设备, 2017, 37 (6): 26- 33.
10 Wang J , Shahidehpour M , Li Z . Security-constrained unit commitment with volatile wind power generation[J] IEEE Transactions on Power Systems, 2008, 23 (3): 1319- 1327.
11 Talari S , Yazdaninejad M , Haghifam M R . Stochasticbased scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads[J] IET Generation, Transmission & Distribution, 2015, 9 (12): 1498- 1509.
12 Parisio A , Del Vecchio C , Vaccaro A . A robust optimization approach to energy hub management[J] International Journal of Electrical Power & Energy Systems, 2012, 42 (1): 98- 104.
13 丁浩, 高峰, 刘坤, 等. 基于鲁棒优化的含风电工业微电网经济调度模型[J]. 电力系统自动化, 2015, 39 (17): 160- 167.
14 Wang L , Li Q , Zhang B , et al. Robust multi-objective optimization for energy production scheduling in microgrids[J] Engineering Optimization, 2019, 51 (2): 332- 351.
15 向月, 刘俊勇, 魏震波, 等. 考虑可再生能源出力不确定性的微电网能量优化鲁棒模型[J]. 中国电机工程学报, 2014, 34 (19): 3063- 3072.
16 Jiang R , Wang J , Zhang M , et al. Two-stage minimax regret robust unit commitment[J] IEEE Transactions on Power Systems, 2013, 28 (3): 2271- 2282.
17 Bai L Q , Li F X , Cui H T , et al. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty[J] Applied Energy, 2016, 167, 270- 279.
18 Ben-Tal A , Goryashko A , Guslitzer E , et al. Adjustable robust solutions of uncertain linear programs[J] Mathematical Programming, 2004, 99 (2): 351- 376.
19 Gorissen B L , Yan?ko?lu I , den Hertog D . A practical guide to robust optimization[J] Omega-International Journal of Management Science, 2015, 53, 124- 137.
20 肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40 (18): 7- 14.
21 Boot J C G . On sensitivity analysis in convex quadratic programming problems[J] Operations Research, 1963, 11 (5): 771- 786.
22 Dantzig G . Linear programming and extensions[M]. Princeton, USA: Princeton University Press, 2016.
[1] 蒋猛, 黄宇, 廖伟涵, 张简炼, 张又文, 郭创新. 基于改进NSGA-II算法的电-气-热综合能源系统多目标优化[J]. 发电技术, 2020, 41(2): 131-136.
[2] 施云辉,郭创新. 考虑运行风险的含储能综合能源系统优化调度[J]. 发电技术, 2020, 41(1): 56-63.
[3] 刘敦楠,张婷婷,李华,齐彩娟,马艳霞,张玮琪,许小峰. 面向泛在电力物联网的综合能源系统规划模型[J]. 发电技术, 2020, 41(1): 50-55.
[4] 欧阳斌,袁志昌,陆超,屈鲁,李东东. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41(1): 19-29.
[5] 张斌,张超,韩晓娟. 含规模化风电并网的负荷频率云PI控制策略研究[J]. 发电技术, 2019, 40(6): 516-520.
[6] 李本新,韩学山,蒋哲,李文博. 计及网损的快速经济调度方法[J]. 发电技术, 2018, 39(1): 90-95.