基于K-Means聚类与Ridge回归算法的煤炭发热量预测研究
乔世超, 陈衡, 李博, 潘佩媛, 徐钢

Research on Coal Calorific Value Prediction Based on K-Means Clustering and Ridge Regression Algorithm
Shichao QIAO, Heng CHEN, Bo LI, Peiyuan PAN, Gang XU
表5 K-Means聚类后对应不同煤种的回归模型评价指标
Tab. 5 Model evaluation indicators of regression models corresponding to different coal types after K-Means clustering
煤炭种类回归方程δMAEδRMSER2
全部煤Qnet,ar=26.569 15-0.337 01Mar-0.291 46Aar+0.103 12FC,ar0.248 450.592 630.945 63
高固定碳煤Qnet,ar=28.753 18-0.345 87Mar-0.315 47Aar+0.076 18FC,ar0.172 610.236 730.967 57
高灰分煤Qnet,ar=24.843 48-0.301 57Mar-0.276 01Aar+0.125 64FC,ar0.224 370.348 470.963 36
高水分煤Qnet,ar=28.329 07-0.404 50Mar-0.299 58Aar+0.089 79FC,ar0.247 840.409 610.957 69