基于K-Means聚类与Ridge回归算法的煤炭发热量预测研究
乔世超, 陈衡, 李博, 潘佩媛, 徐钢

Research on Coal Calorific Value Prediction Based on K-Means Clustering and Ridge Regression Algorithm
Shichao QIAO, Heng CHEN, Bo LI, Peiyuan PAN, Gang XU
表3 不同回归算法对应的模型评价指标
Tab. 3 Model evaluation indicators corresponding to different regression algorithms
回归算法回归方程δMAEδRMSER2
OLS回归Qnet,ar=26.569 84-0.337 03Mar-0.291 47Aar+0.103 11FC,ar0.270 360.628 380.942 94
Lasso回归Qnet,ar=21.542 41-0.150 61Mar-0.222 05Aar+0.133 61FC,ar0.464 600.792 840.909 16
Ridge回归Qnet,ar=26.569 15-0.337 01Mar-0.291 46Aar+0.103 12FC,ar0.248 450.592 630.945 63
Elastic Net回归Qnet,ar=23.358 12-0.220 51Mar-0.247 72Aar+0.123 42FC,ar0.358 700.696 540.929 89