基于K-Means聚类与Ridge回归算法的煤炭发热量预测研究
乔世超, 陈衡, 李博, 潘佩媛, 徐钢

Research on Coal Calorific Value Prediction Based on K-Means Clustering and Ridge Regression Algorithm
Shichao QIAO, Heng CHEN, Bo LI, Peiyuan PAN, Gang XU
表1 数据集基本情况
Tab. 1 Basic information of the dataset
参数最小值最大值平均值
收到基低位发热量Qnet,ar/(MJ⋅kg-1)14.1428.1821.13
收到基水分质量分数Mar/%2.1529.099.55
收到基灰分质量分数Aar/%4.4148.5224.96
收到基固定碳质量分数FC,ar/%31.4671.0347.08