基于图正则化堆叠自编码器的风机轴承故障诊断方法
刘展, 刘健洵, 包琰洋, 李大字
Bearing Faults Diagnosis Method Based on Stacked Auto-Encoder With Graph Regularization for Wind Turbines
Zhan LIU, Jianxun LIU, Yanyang BAO, Dazi LI
表2
特征参数
Tab. 2
Characteristic parameters
时域特征
频域特征
p
1
=
∑
n
=
1
N
x
(
n
)
N
p
12
=
∑
k
=
1
K
s
(
k
)
K
P
2
=
∑
n
=
1
N
[
x
(
n
)
-
p
1
]
2
N
-
1
p
13
=
∑
k
=
1
K
[
s
(
k
)
-
p
12
]
2
K
-
1
p
3
=
(
∑
n
=
1
N
x
(
n
)
N
)
2
p
14
=
∑
k
=
1
K
[
s
(
k
)
-
p
12
]
3
K
(
p
13
)
3
p
4
=
∑
n
=
1
N
[
x
(
n
)
]
2
N
p
15
=
∑
k
=
1
K
[
s
(
k
)
-
p
12
]
4
K
p
13
2
p
5
=
m
a
x
x
(
n
)
p
16
=
∑
k
=
1
K
f
k
s
(
k
)
∑
k
=
1
K
s
(
k
)
p
6
=
∑
n
=
1
N
[
x
(
n
)
-
p
1
]
3
(
N
-
1
)
p
2
3
p
17
=
∑
k
=
1
K
(
f
k
-
P
16
)
2
s
(
k
)
K
p
7
=
∑
n
=
1
N
[
x
(
n
)
-
p
1
]
4
(
N
-
1
)
p
2
4
p
18
=
∑
k
=
1
K
f
k
2
s
(
k
)
∑
k
=
1
K
s
s
(
k
)
p
8
=
p
5
p
4
p
19
=
∑
k
=
1
K
f
k
4
s
(
k
)
∑
k
=
1
K
f
k
2
s
(
k
)
p
9
=
p
5
p
3
p
20
=
∑
k
=
1
K
f
k
2
s
(
k
)
∑
k
=
1
K
s
(
k
)
∑
k
=
1
K
f
k
4
(
k
)
p
10
=
p
4
1
N
∑
n
=
1
N
x
(
n
)
p
21
=
p
17
p
16
p
11
=
p
5
1
N
∑
n
=
1
N
x
(
n
)
p
22
=
∑
k
=
1
K
(
f
k
-
p
16
)
3
s
(
k
)
K
p
17
3
p
23
=
∑
k
=
1
K
(
f
k
-
p
16
)
4
s
(
k
)
K
p
17
4
p
24
=
∑
k
=
1
K
(
f
k
-
p
16
)
1
/
2
s
(
k
)
K
p
17