Please wait a minute...
发电技术  2020, Vol. 41 Issue (2): 175-185    DOI: 10.12096/j.2096-4528.pgt.19066
能源互联网 本期目录 | 过刊浏览 |
直流分布式电源系统稳定性判据研究综述
王久和1(),王勉2(),吴学智2(),李建国1(),唐芬2(),张雅静1()
1 北京信息科技大学, 北京市 海淀区 100192
2 北京交通大学, 北京市 海淀区 100044
Review of Stability Criteria Study for Direct Current Distributed Power System
Jiuhe WANG1(),Mian WANG2(),Xuezhi WU2(),Jianguo LI1(),Fen TANG2(),YA Jing ZHANG1()
1 Beijing Information Science & Technology University, Haidian District, Beijing 100192, China
2 Beijing Jiaotong University, Haidian District, Beijing 100044, China
全文: HTML    PDF(517 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

在实际工程应用中,需要利用稳定性判据判断直流分布式电源系统(direct current distributed power system,DCDPS)的稳定性,以便采取合适的控制策略。因此,DCDPS稳定性判据成为国内外学者研究的热点。对基于等效源变换器(子系统)和负载变换器(子系统)的稳定性判据、基于母线电压控制变换器和母线电流控制变换器的稳定性判据、基于无源性的稳定性判据、大扰动信号情况下稳定性判据的基本思想、特点进行分析。指出这些稳定性判据的优点与不足,给出了DCDPS稳定性判据研究的趋势,提出了基于无源性的稳定性判据和其他判据相结合的稳定性判断新方法。

关键词 直流分布式电源系统(DCDPS)稳定性判据源变换器负载变换器次回路增益无源性大扰动    
Abstract

In practical engineering application, it is necessary to judge the stability of direct current distributed power system (DCDPS) by using stability criteria, so as to adopt appropriate control strategies. Therefore, stability criteria of DCDPS are generally interested by scholars at home and abroad. The basic idea and characteristics of stability criteria based on equivalent source converter (subsystem) and equivalent load converter (subsystem), a bus voltage-controlled converter and a bus current-controlled converter, passivity and large disturbance signal were analyzed. Based on the above analysis, the advantages and defects of the stability criteria were pointed out. The research trends of the stability criteria for DCDPS were put forward, and a new method of stability criteria was proposed by combining passivity-based stability criterion and other stability criteria.

Key wordsdirect current distributed power system (DCDPS)    stability criteria    source converter    load converter    minor loop gain    passivity    large disturbance
收稿日期: 2019-04-27      出版日期: 2020-04-23
ZTFLH:  TM712  
基金资助:国家自然科学基金项目(51777012);北京市自然科学基金-教委联合资助项目(KZ201911232045)
作者简介: 王久和(1959),男,博士,教授,研究方向为电能变换器非线性控制、电能质量控制、微电网等, wjhyhrwm@163.com|王勉(1985),男,博士研究生,研究方向为电力电子系统及其控制、直流微电网等, 17117421@bjtu.edu.cn|吴学智(1975),男,博士,副教授,研究方向为微电网、风力发电系统、电能变换器、电能质量和电动机控制等, xzhwu@bjtu.edu.cn|李建国(1975),男,博士,副教授,研究方向为双向DC-DC变换器、高频电能转换系统、柔性AC和DC传输或分布系统, lijianguo@bistu.edu.cn|唐芬(1984),女,博士,副教授,研究方向为微电网、风力发电系统、电能质量及电动机控制等, fent@bjtu.edu.cn|张雅静(1984),女,博士,讲师,研究方向为高频DC-DC变换器、高功率密度DC-DC变换器及其在新能源中应用等, zhangyajing@bistu.edu
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王久和
王勉
吴学智
李建国
唐芬
张雅静
引用本文:

王久和,王勉,吴学智,李建国,唐芬,张雅静. 直流分布式电源系统稳定性判据研究综述[J]. 发电技术, 2020, 41(2): 175-185.
Jiuhe WANG,Mian WANG,Xuezhi WU,Jianguo LI,Fen TANG,YA Jing ZHANG. Review of Stability Criteria Study for Direct Current Distributed Power System. Power Generation Technology, 2020, 41(2): 175-185.

链接本文:

http://www.pgtjournal.com/CN/10.12096/j.2096-4528.pgt.19066      或      http://www.pgtjournal.com/CN/Y2020/V41/I2/175

图1  DCDPS的SC与LC等效
图2  Middlebrook稳定性判据禁区
图3  GMPM稳定性判据禁区
图4  OA稳定性判据禁区
图5  1个源子系统给n个负载子系统供电的DCDPS
图6  MP稳定性判据禁区
图7  ESAC稳定性判据禁区
图8  RES稳定性判据禁区
图9  带发电及储能单元的DCDPS
图10  BVCC和BCCC
图11  DCDPS的统一形式
图12  n-端口网络
图13  DCDPS及其等效网络
1 Tabari M , Yazdani A . A mathematical model for stability analysis of a DC distribution system for power system integration of plug-in electric vehicles[J] IEEE Transactions on Vehicular Technology, 2015, 64 (5): 1729- 1738.
doi: 10.1109/TVT.2014.2336854
2 梁珺, 冯洪涛, 唐巍, 等. 消纳分布式电源和电动汽车的交直流混合中压配电网供电模式[J]. 分布式能源, 2018, 3 (1): 39- 49.
3 夏晨阳, 赵书泽, 杨颖, 等. 电动汽车无线充电系统研究综述[J]. 广东电力, 2018, 31 (11): 3- 14.
4 岳红权, 王建渊, 杨文宇, 等. 基于互联网+的充电站配电设备在线监测研究[J]. 电网与清洁能源, 2018, 34 (4): 29- 35.
doi: 10.3969/j.issn.1674-3814.2018.04.006
5 康少波.船舶电力变换系统的稳定性分析与控制研究[D].哈尔滨:哈尔滨工程大学, 2013.
6 Siegers J, Santi E. Stability analysis and control design for an all-electric ship MVDC power distribution system using a passivity based stability criterion and power hardware-in-the-loop simulation[C]//IEEE Electric Ship Technologies Symposium (ESTS). VA, USA: IEEE, 2015: 86-92.
7 万成安, 于磊, 刘建强. 航天器直流电源系统稳定性分析方法研究[J]. 航天器工程, 2009, 18 (2): 14- 19.
doi: 10.3969/j.issn.1673-8748.2009.02.003
8 Iftikhar M U, Baig M S. Stability study of spacecraft electrical power system with constant power loads[C]//IEEE 14th International Multitopic Conference (INMIC). Karachi, Pakistan: IEEE, 2011: 217-221.
9 Harnefors L , Wang X F , Yepes A G , et al. Passivity-based stability assessment of gridconnected VSCs:an overview[J] IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (1): 116- 125.
doi: 10.1109/JESTPE.2015.2490549
10 Riccobono A , Santi E . Comprehensive review of stability criteria for DC power distribution systems[J] IEEE Transactions on Industry Applications, 2014, 50 (5): 3525- 3535.
doi: 10.1109/TIA.2014.2309800
11 Wildrick C M , Lee F C , Cho B H , et al. A method of defining the load impedance specification for a stable distributed power system[J] IEEE Transactions on Power Electronics, 1995, 10 (3): 280- 285.
doi: 10.1109/63.387992
12 Feng X G , Liu J J , Lee F C . Impedance specifications for stable DC distributed power systems[J] Transactions on Power Electronics, 2002, 17 (2): 157- 162.
doi: 10.1109/63.988825
13 Vesti S , Suntio T , Oliver J A , et al. Impedance-based stability and transient-performance assessment applying maximum peak criteria[J] IEEE Transactions on Power Electronics, 2013, 28 (5): 2099- 2104.
doi: 10.1109/TPEL.2012.2220157
14 Vesti S, Oliver J A, Prieto R, et al. Simplified smallsignal stability analysis for optimized power system architecture[C]//Twenty-eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach, USA: IEEE, 2013: 1702-1708.
15 李安寿.分布式电源系统稳定性研究[D].哈尔滨:哈尔滨工业大学, 2014.
16 Sudhoff S D , Glover S F , Lamm P T , et al. Admittance space stability analysis of power electronic systems[J] IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (3): 965- 973.
doi: 10.1109/7.869516
17 杨晓平, 张浩, 马西奎. 基于ESAC标准的分布式电源系统稳定裕度监控[J]. 电工技术学报, 2009, 24 (8): 14- 21.
18 Sudhoff S D, Glover S F. Three-dimensional stability analysis of DC power electronics based systems[C]//IEEE 31st Power Electronics Specialists Conference. Galway, Ireland: IEEE, 2000: 101-106.
19 Sudhoff S D, Crider J M. Advancements in generalized immittance based stability analysis of DC power electronics based distribution systems[C]//IEEE Electric Ship Technologies Symposium. Alexandria, VA: IEEE, 2015: 207-212.
20 Simiyu P , Ai X , Bitew G T , et al. Small-signal stability analysis for the multiterminal VSC MVDC distribution network:a review[J] The Journal of Engineering, 2019, 16, 1068- 1075.
doi: 10.1049/joe.2018.8842
21 Zhong Q C , Zhang X . Impedance-sum stability criterion for power electronic systems with two converters/sources[J] IEEE Access, 2019, 7, 21254- 21265.
doi: 10.1109/ACCESS.2019.2894338
22 Wei Y Q , Luo Q M , Chen S , et al. DC current bus distributed power system and its stability analysis[J] IET Power Electronics, 2019, 12 (3): 458- 464.
doi: 10.1049/iet-pel.2018.5533
23 Wang X P , Yao R P , Rao F Q . Three-step impedance criterion for small-signal stability analysis in two-stage DC distributed power systems[J] IEEE Power Electronics Letters, 2003, 1 (3): 83- 87.
doi: 10.1109/LPEL.2003.822371
24 Indu Rani B , Saravana Ilango G , Nagamani C . Control strategy for power flow management in a PV system supplying DC loads[J] IEEE Transactions on Industrial Electronics, 2013, 60 (8): 3185- 3194.
doi: 10.1109/TIE.2012.2203772
25 张欣.直流分布式电源稳定性研究[D].南京:南京航天航空大学, 2014.
26 Zhang X , Ruan X B , Tse C K . Impedance based local stability criterion for DC distributed power systems[J] IEEE Transactions on Circuits and Systems, 2015, 62 (3): 916- 925.
doi: 10.1109/TCSI.2014.2373673
27 阮新波.直流变换器级联系统:稳定性判据与解决方案[R].南京:南京航天航空大学, 2016.
28 王久和. 无源控制理论及其应用[M]. 北京: 电子工业出版社, 2010.
29 Mendez V, Tavakoli M. A passivity criterion for n-port multilateral haptic systems[C]//49th IEEE Conference on Decision and Control. Atlanta, GA, USA: IEEE, 2011: 274-279.
30 Riccobono A, Santi E. A novel passivity-based stability criterion (PBSC)for switching converter dc distribution systems[C]//Twenty-seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Orlando, FL, USA, 2012: 2560-2567.
31 Riccobono A. Stabilizing controller design for a DC power distribution system using a passivity-based stability criterion[D]. South Carolina: University of South Carolina, 2013.
32 Riccobono A, Santi E. Stability analysis of an all-electric ship MVDC power distribution system using a novel passivity-based stability criterion[C]//IEEE Electric Ship Technologies Symposium (ESTS). Arlington, VA, USA: IEEE, 2013: 411-419.
33 Siegers J, Arrua S, Santi E. Stabilizing controller design for multi-bus MVDC distribution systems using a passivity based stability criterion and positive feed-forward control[C]//IEEE Energy Conversion Congress and Exposition (ECCE). Montreal, QC, Canada: IEEE, 2015: 5180-5187.
34 Gu Y J , Li W H , He X N . Passivity-based control of DC microgrid for self-disciplined stabilization[J] IEEE Transactions on Power Systems, 2015, 30 (5): 2623- 2631.
doi: 10.1109/TPWRS.2014.2360300
35 Riccobono A, Siegers J, Santi E. Stabilizing positive feed-forward control design for a DC power distribution system using a passivity-based stability criterion and system bus impedance identification[C]//IEEE Applied Power Electronics Conference and Exposition. Fort Worth, TX, USA: IEEE, 2014: 1139-1146.
36 支娜, 张辉, 肖曦, 等. 分布式控制的直流微电网系统级稳定性分析[J]. 中国电机工程学报, 2016, 36 (2): 368- 378.
37 Kabalan M , Singh P , Niebur D . Large signal Lyapunov-based stability studies on microgrids:a review[J] IEEE Transactions on Smart Grid, 2017, 8 (5): 2287- 2295.
doi: 10.1109/TSG.2016.2521652
38 厉泽坤, 孔力, 裴玮, 等. 基于混合势函数的下垂控制直流微电网大扰动稳定性分析[J]. 电网技术, 2018, 42 (11): 5725- 5734.
39 滕昌鹏, 王玉斌, 周博恺, 等. 含恒功率负载的直流微网大信号稳定性分析[J]. 电工技术学报, 2019, 34 (5): 973- 982.
40 刘欣博, 高卓. 考虑恒功率负载与储能单元动态特性的直流微电网系统大信号稳定性分析[J]. 电工技术学报, 2019, 34 (S1): 292- 299.
41 Middlebrook R D , Vorpérian V , Lindal J . The extra element theorem[J] IEEE Transactions on Circuits and Systems-I:Fundamental Theory and Applications, 1998, 45 (9): 919- 935.
doi: 10.1109/81.721258
No related articles found!