Please wait a minute...
发电技术  2019, Vol. 40 Issue (3): 230-238    DOI: 10.12096/j.2096-4528.pgt.19014
燃煤发电系统能源高效清洁利用 本期目录 | 过刊浏览 |
低温热源有机工质带叶片盘式透平设计及性能分析
陈曦(),张燕平*()
Design and Performance Analysis of Blade Disc Turbine in Low-grade Heat Source ORC System
Xi CHEN(),Yanping ZHANG*()
全文: HTML    PDF(953 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

Tesla盘式透平是一种以流体边界层摩擦力带动转子旋转的非传统透平,具有结构简单、成本低廉、工质适应性好等优点,尤其适用于低品位热源余热回收系统。但由于其特有的做功方式,盘式透平的运行转矩与效率均远低于常规透平形式,这也是制约其商业应用的主要因素。在传统盘式透平的相邻盘片间增加导流叶片,并针对增加叶片后的透平结构进行了数学建模以及计算流体力学(computational fluid dynamics,CFD)验证。CFD验证表明,所建立的数学模型能够计算流体通道内的流体速度场、压力场分布,并能够预测透平效率在不同工况下的变化趋势。针对余热回收有机朗肯循环(organic rankine cycle,ORC)系统,利用所建立的数学模型,使用不同有机工质进行计算并进行对比。结果表明,在使用不同种类工质做功时,增加叶片均可以大幅提升盘式透平转矩与效率。

关键词 发电余热回收盘式透平数学模型计算流体力学有机朗肯循环    
Abstract

Tesla disc turbine is a kind of unconventional turbine utilizing viscous force in the boundary layer to drive the rotor. Due to the simple structure and low cost as well as the good adaptability to the working fluids, Tesla disc turbine is especially adaptable to the low-grade heat source recovery system. But the unique working principle results in the low operation torque and low efficiency comparing with the common forms of turbines, thus the commercial application of disc turbine is limited. The blades were added between adjacent discs and a mathematcial model for the new turbine structure was formulated. Computational fluid dynamics (CFD) verified that the present mathematical model could calculate the velocity and pressure distribution of the working fluid in the flow field and could predict the efficiency variation trend under different working conditions. Utilizing the present mathematical model, calculations and comparisons were made aiming at low-grade heat recovery organic rankine cycle (ORC) system using different working fluids. The results show that, with different working fluids, adding blades between discs in Tesla disc turbine could significantly improve the operation torque and turbine efficiency.

Key wordspower generation    waste heat recovery    disc turbine    mathematical model    computational fluid dynamics (CFD)    organic rankine cycle (ORC)
收稿日期: 2019-01-29      出版日期: 2019-07-02
基金资助:国家重点基础研究发展计划项目(2015CB251504)
通讯作者: 张燕平     E-mail: icarechenxi16@hust.edu.cn;zyp2817@hust.edu.cn
Corresponding author: Yanping ZHANG     E-mail: icarechenxi16@hust.edu.cn;zyp2817@hust.edu.cn
作者简介: 陈曦(1992),男,硕士研究生,主要研究方向为带叶片Tesla盘式透平, icarechenxi16@hust.edu.cn
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈曦
张燕平
引用本文:

陈曦,张燕平. 低温热源有机工质带叶片盘式透平设计及性能分析[J]. 发电技术, 2019, 40(3): 230-238.
Xi CHEN,Yanping ZHANG. Design and Performance Analysis of Blade Disc Turbine in Low-grade Heat Source ORC System. Power Generation Technology, 2019, 40(3): 230-238.

链接本文:

http://www.pgtjournal.com/CN/10.12096/j.2096-4528.pgt.19014      或      http://www.pgtjournal.com/CN/Y2019/V40/I3/230

图1  带叶片盘式透平示意图
表1  fluent模型基本参数设置
图2  盘片间狭缝通道内部流体轴向速度分布
图3  叶片进出口速度三角形
图4  狭缝流道中间截面速度流线图
图5  透平出口气流速度对比
图6  透平入口总压对比
图7  透平效率对比
图8  余热回收ORC系统示意图
表2  工质基本物性参数
图9  不同工质透平效率对比
图10  不同工质输出功率对比
1 周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望——试论三代电网[J]. 中国电机工程学报, 2013, 32 (22): 1- 11.
2 谭永生. DCCHP排烟余热耦合空气源热泵系统性能分析[J]. 发电技术, 2018, 39 (6): 526- 532.
3 顾伟, 翁一武, 王艳杰, 等. 低温热能有机物发电系统热力分析[J]. 太阳能学报, 2008, 29 (5): 608- 612.
doi: 10.3321/j.issn:0254-0096.2008.05.020
4 顾煜炯, 陈礼敏, 耿直. 不同太阳能热源下混合工质ORC系统性能分析[J]. 发电技术, 2018, 39 (2): 177- 187.
5 韩中合, 叶依林, 刘赟. 不同工质对太阳能有机朗肯循环系统性能的影响[J]. 动力工程学报, 2012, 32 (3): 229- 234.
doi: 10.3969/j.issn.1674-7607.2012.03.010
6 Tesla N.Tesla turbine: US 1061206[P].1913-07-16.
7 Usman S K M, Maqsood M I, Ali E, et al.Proposed applications with implementation techniques of the upcoming renewable energy resource, The Tesla Turbine[C]//Journal of Physics: Conference Series.IOP Publishing, 2013: 467-471.
8 Hoya G P , Guha A . The design of a test rig and study of the performance and efficiency of a Tesla disc turbine[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power & Energy, 2009, 223 (4): 451- 465.
9 Guha A , Smiley B . Experiment and analysis for an improved design of the inlet and nozzle in Tesla disc turbines[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2010, 224 (2): 261- 277.
doi: 10.1243/09576509JPE818
10 Adams R , Rice W . Experimental investigation of the flow between corotatingdisks[J]. Journal of Applied Mechanics, 1970, 37 (3): 844- 849.
doi: 10.1115/1.3408618
11 Sengupta S , Guha A . A theory of Tesla disc turbines[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power & Energy, 2012, 226 (5): 650- 663.
12 Thawichsri K , Nilnont W . A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle[J]. International Journal of Advanced Culture Technology, 2015, 3 (2): 58- 66.
doi: 10.17703/IJACT.2015.3.2.58
13 包光宇.边界层透平研制与实验研究[D].北京:清华大学, 2014.
14 岳晨,韩东,焦炜琦.带叶盘式附面层透平: CN 102182517 A[P].2011-05-06.
15 齐文娇, 邓清华, 丰镇平, 等. 盘式透平数值方法验证及流动特性分析[J]. 工程热物理学报, 2015, 36 (10): 2122- 2126.
16 Boyd K E , Rice W . Laminar inward flow of an incompressible fluid between rotating disks with full peripheral admission[J]. Journal of Applied Mechanics, 1968, 35 (2): 229- 235.
doi: 10.1115/1.3601185
17 房娜. 管路沿程压降计算方法综述[J]. 中国科技信息, 2008, (21): 60- 61.
doi: 10.3969/j.issn.1001-8972.2008.21.035
[1] 朱凌云,李国能,康泰云,陈华锋,郑友取. 基于生物质燃料的水冷式温差发电机的实验研究[J]. 发电技术, 2019, 40(2): 148-154.
[2] 杨磊,任健. 基于层次分析法的燃煤发电企业低碳综合评价[J]. 发电技术, 2019, 40(1): 66-70.
[3] 于航,刘阳,连魏魏,朱红路. 一种基于神经网络的硅基光伏组件运行温度在线软测量方法[J]. 发电技术, 2018, 39(6): 566-573.
[4] 何力,吕红芳. 考虑经济性的多微电网优化调度研究[J]. 发电技术, 2018, 39(5): 397-404.
[5] 董玉亮,袁家海,马丽荣. 面向灵活性发电的燃煤机组大气排放特性分析[J]. 发电技术, 2018, 39(5): 425-432.
[6] 刘惠娟,王颖明,苏力. 发电机出口PT匝间短路故障分析[J]. 发电技术, 2018, 39(5): 462-465.
[7] 庄雅妮,杨秀媛,金鑫城. 风光储联合发电运行技术研究[J]. 发电技术, 2018, 39(4): 296-303.
[8] 朱德臣. 元素碳含量检测在燃煤发电企业温室气体排放核算中的应用[J]. 发电技术, 2018, 39(4): 363-366.
[9] 张立栋,王硕,李伟伟,何志超,张鹏龙. 撞击流技术在发电相关领域的研究与应用进展[J]. 发电技术, 2018, 39(4): 354-362.
[10] 张仲彬,杨勇,纪晓东,金韦辰,姜铁骝,曹丽华. 永磁涡流风力制热装置的参数设计[J]. 发电技术, 2018, 39(3): 286-290.
[11] 仇梓峰,王爽心,李蒙. 基于无人机图像的风力发电机叶片缺陷识别[J]. 发电技术, 2018, 39(3): 277-285.
[12] 王超. 结合燃气-蒸汽联合循环的液化天然气冷能发电利用[J]. 发电技术, 2018, 39(3): 263-267.
[13] 孙飞,刘烨,魏高升,由文江. 火电厂螺杆式空压机余热利用方案及经济性分析[J]. 发电技术, 2018, 39(3): 240-243.
[14] 邹丹,艾欣,王奥,王坤宇,黄仁乐,陈乃仕,蒲天骄. 三端背靠背柔性直流输电的虚拟同步发电机控制策略及其在配电网中的应用[J]. 发电技术, 2018, 39(3): 233-239.
[15] 顾煜炯,陈礼敏,耿直. 不同太阳能热源下混合工质ORC系统性能分析[J]. 发电技术, 2018, 39(2): 177-187.