Please wait a minute...
发电技术  2020, Vol. 41 Issue (2): 202-205    DOI: 10.12096/j.2096-4528.pgt.18183
发电及环境保护 本期目录 | 过刊浏览 |
基于弹塑性理论的燃机转子寿命分析
丁继伟(),李岩
Analysis on Gas Turbine Rotor Life Based on Elastoplastic Theory
Jiwei DING(),Yan LI
全文: HTML    PDF(638 KB)  
输出: BibTeX | EndNote (RIS)      
摘要: 

深圳南天电厂用于联合循环的13E2型燃气轮机出现压气机转子裂纹事故,为准确预测同类机组的疲劳寿命,基于弹塑性理论,考虑温度场与离心力对燃机压气机转子疲劳寿命的影响,建立该型燃气轮机压气机转子的有限元热-固耦合数值仿真模型。基于低周疲劳理论,计算该燃气轮机压气机转子的疲劳寿命寿命为5333次,该燃气轮机压气机转子在电厂的实际疲劳寿命为4435次,计算误差在20%以内。利用该方法可以较准确地估算燃气轮机转子的寿命。

关键词 燃机转子低周疲劳数值仿真    
Abstract

A compressor rotor crack accident occurred in 13E2 gas turbine used for combined cycle in Shenzhen Nantian Power Plant. To accurately predict the fatigue life of similar units, based on elastic-plastic theory, considering the influence of temperature field and centrifugal force on fatigue life of compressor compressor rotor, the finite element thermo-solid coupling numerical simulation model of the compressor rotor of the gas turbine was established. Based on the low cycle fatigue theory, it is calculated that the fatigue life of the gas turbine compressor rotor is 5333 times, and the actual fatigue life of the compressor rotor of the gas turbine in the power plant is 4435 times. The calculation error is within 20%. This method can be used to estimate the rotor life of gas turbine accurately.

Key wordsturbine    rotor    low cycle fatigue    numerical simulation
收稿日期: 2019-01-10      出版日期: 2020-04-23
ZTFLH:  TK47  
作者简介: 丁继伟(1986),男,硕士,工程师,从事强度、疲劳相关工作, djw3743@126.com
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁继伟
李岩
引用本文:

丁继伟,李岩. 基于弹塑性理论的燃机转子寿命分析[J]. 发电技术, 2020, 41(2): 202-205.
Jiwei DING,Yan LI. Analysis on Gas Turbine Rotor Life Based on Elastoplastic Theory. Power Generation Technology, 2020, 41(2): 202-205.

链接本文:

http://www.pgtjournal.com/CN/10.12096/j.2096-4528.pgt.18183      或      http://www.pgtjournal.com/CN/Y2020/V41/I2/202

图1  压气机转子上产生裂纹的位置
图2  机组实际裂纹
图3  几何模型
图4  网格模型
表1  计算部位的温度及升温速率
图5  温度场计算结果
图6  只有离心力作用下的应力场计算结果
图7  只有温度场作用下的应力场计算结果
图8  离心力与温度场共同作用下的应力场计算结果
图9  寿命分析结果
1 朱跃. 火电厂"厂界环保岛"改造与运维关键技术[J]. 发电技术, 2018, 39 (1): 1- 12.
2 Maktouf W , Ammar K , Naceur I B , et al. Multiaxial high-cycle fatigue criteria and life prediction:Application to gas turbine blade[J] International Journal of Fatigue, 2016, 92, 25- 35.
doi: 10.1016/j.ijfatigue.2016.06.024
3 Barella S , Boniardi M , Cincera S . et al Failure analysis of a third stage gas turbine blade[J] Engineering Failure Analysis, 2011, 18 (1): 386- 393.
doi: 10.1016/j.engfailanal.2010.09.017
4 侯贵仓, 王荣桥, 阎晓军, 等. 轮盘榫齿高低周复合疲劳寿命试验研究[J]. 北京航空航天大学学报, 1999, (2): 47- 50.
5 Oakley S Y , Nowell D . Prediction of the combined high-and low-cycle fatigue performance of gas turbine blades after foreign object damage[J] International Journal of Fatigue, 2007, 29 (1): 69- 80.
doi: 10.1016/j.ijfatigue.2006.02.042
6 李伟, 史海秋. 航空发动机涡轮叶片疲劳-蠕变寿命试验技术研究[J]. 航空动力学报, 2001, 16 (4): 323- 326.
doi: 10.3969/j.issn.1000-8055.2001.04.005
7 朱宝田, 彭泽瑛. 汽轮机末级905 mm叶片疲劳寿命研究[J]. 中国电力, 2002, 35 (3): 10- 12.
8 白云. 600 MW汽轮机转子低周疲劳寿命计算及研究[D].长沙:长沙理工大学, 2009.
9 刘华锋, 王炜哲, 蒋浦宁, 等. 超超临界汽轮机转子蠕变对低周疲劳应变的影响[J]. 动力工程学报, 2010, 30 (9): 715- 719.
10 楼上游, 骆天舒, 应博芬, 等. 基于低周疲劳理论T型叶根转子轮槽寿命预测[J]. 热力透平, 2015, 44 (2): 94- 97.
11 周维, 刘义伦, 杨大炼. 一种多轴载荷下的疲劳寿命预测模型[J]. 机械设计与研究, 2014, (4): 71- 73.
12 Park Ji-Ho Song , Jun-Hyub . New estimation method of fatigue properties of aluminum alloys[J] Transaction of the ASME. Journal of Engineering Materials and Technology, 2003, 125 (2): 208- 214.
doi: 10.1115/1.1562953
13 姚卫星. 结构疲劳分析[M]. 北京: 国防工业出版社, 2003: 71- 72.
14 周维, 刘义伦, 杨大炼. 一种多轴载荷下的疲劳寿命预测模型[J]. 机械设计与研究, 2014, (4): 71- 73.
15 Shi D , Li Z , Yang X , et al. Accelerated LCF-creep experimental methodology for durability life evaluation of turbine blade[J] Fatigue & Fracture of Engineering Materials & Structures, 2018, 41 (1): 1196- 1207.
[1] 李国庆,崔崇,何青. 正暖和倒暖启动对汽轮机组寿命的影响研究[J]. 发电技术, 2019, 40(6): 580-586.